简介:摘要 : 受经济和气候驱动,长江经济带水田空间格局发生了显著变化,影响区域粮食安全与生态安全。本研究基于 1990-2015年土地利用遥感监测数据,利用 GIS的空间分析功能,探究长江经济带水田空间格局动态变化特征,采用当量因子法计算生态系统服务价值( ESV),分析了水田变化的综合影响。结果表明: 1) 1990-2015年长江经济带水田规模持续缩减,共减少了 17390km2,减幅呈增长态势具有显著地域差异,长江中上游与下游的水田减幅相差约为 9.56%。其中下游减幅较大,水田占区域比例随之降低,中上游恰好相反。 2)由于经济建设及水产养殖的发展,水田主要转化为建设用地和水系,水田主要由水系、旱地和湿地等转化而来。长江三角洲城市群、长江中游及成渝城市群的水田变化最为剧烈,建设用地侵占水田扩张的现象分布广泛,水田转为水系主要在两湖平原局部地区。 3)水田与其他生态系统的转化对 ESV是正影响,水田转为水系对此贡献最大,其转化规模决定了不同时期 ESV净增量的大小,水系转化为水田损失的价值最多,建设用地侵占水田次之。不同市域的水田变化情况不一致,因此 ESV增减情况具有明显差异。 4)生态系统服务中水文调节、水资源供给增强的同时,食物生产、气体调节受到严重损害,与水资源规模扩大和水田资源大量流失有直接关系。研究结果有助于揭示长江流域水田的时空变化过程及其对各项生态系统服务的影响,可为区域土地利用规划、农业政策与生态可持续发展提供理论支持。
简介:摘要 : 植物化学保护即使用植保机械喷施化学农药是当前最主要的病虫害防控方法,一直以来对保障农业生产安全与粮食有效供给起至关重要作用。能够实现按需精准施药、变量施药、人机分离与人药分离的高效、精准、智能的施药技术和装备是提高农药药效与利用率的保证,也是保障食品安全、降低农民劳动强度的重要措施,是目前国内外研究的热点。本研究对精准施药关键技术及研究现状进行了分析,对适用于不同作业场景的精准施药装备的研究现状、典型代表、应用进展等进行了分类总结,分析了目前精准施药发展中面临的挑战,并提出了对策和建议。本研究可为精准施药技术研究的推进、智能施药装备的研发和现代化农业的发展提供参考和思路。
简介:摘要 : 植物表型组学研究正逐渐向综合化、规模化、多尺度和高通量的方向快速发展。本文首先介绍了植物表型研究的最新动向。然后针对室内表型监测平台的特点和各类室内表型针对的表型性状进行了系统介绍,包括产量、品质、胁迫抗性(包括干旱、抗冷热、盐胁迫、重金属和病虫害)等。在此基础上,本文还根据通量、传感器集成度和平台大小等把一些国内外流行的室内植物表型平台进行了分类,并介绍了这些室内表型平台在植物研究中的应用情况。同时,本文还介绍了室内表型数据的管理和解析方法。最后,本文着重讨论了室内表型平台的发展方向,并结合中国植物研究的实际情况对表型组学在中国的发展提出了展望,以期为中国植物表型研究提供指导和建议。
简介:[目的/意义]随着奶牛养殖业向规模化、精准化和信息化养殖迅速发展,对奶牛健康的监测和管理需求也日益增加.实时监测奶牛的反刍行为对于第一时间获取奶牛健康的相关信息以及预测奶牛疾病具有至关重要的意义.目前,针对奶牛反刍行为的监测已经提出了多种策略,包括基于视频监控、声音识别、传感器监测等方法,但是这些方法普遍存在实时性不足的问题.为了减轻数据传输的数量与云端计算量,实现对奶牛反刍行为的实时监测,基于边缘计算的思想提出了一种实时对奶牛反刍行为进行监测的方法.[方法]使用自主设计的边缘设备实时地采集并处理奶牛的六轴加速度信号,基于六轴数据提出了基于联邦式与拆分式边缘智能这两种不同的策略对奶牛反刍行为实时识别方法展开研究.在基于联邦式边缘智能的奶牛反刍行为实时识别方法研究中,通过协同注意力机制改进MobileNet v3网络提出了...
简介:摘要 : 叶片湿润时间( LWD)是植物病害模型的重要输入变量之一,它与许多叶部病原菌的侵染有关,影响病原侵染和发育速率。为了准确地预测日光温室黄瓜病害的发生时间和方位,本研究于 2019年 3月和 9月在北京两个不同类型日光温室内按照棋盘格法设置了 9个采样点部署温湿光传感器和目测叶片湿润时间,每隔 1 h采集一次温度、湿度、辐射和叶片湿润数据进行定量估算分析。分析结果表明: BP神经网络模型在两个温室的试验条件下获得了相似的准确度( ACC为 0.90和 0.92),比相对湿度经验模型估算叶片湿润时间的准确度( ACC为 0.82和 0.84)更高,平均绝对误差 MAE分别为 1.81和 1.61 h,均方根误差 RSME分别为 2.10和 1.87,决定系数 R2分别为 0.87和 0.85;在晴天和多云天气条件下,叶片湿润时间的空间分布总体规律是南部>中部>北部,南面是叶片湿润平均时间( 12.17 h/d)最长的区域;由东向西方向上,叶片湿润时间的空间分布总体规律是东部>西部>中部,中部是叶片湿润平均时间( 4.83 h/d)最短的区域;雨天的叶片湿润平均时间比晴天和多云长,春季和秋季分别为 17.15和 17.41 h/d。这些变化和差异对温室黄瓜种群水平方向的叶片湿润时间分布具有重要影响,与大多数高湿性黄瓜病害的发生规律密切相关。本研究为预测温室黄瓜病害分布提供了有价值的参考,对控制病害流行和减少农药使用具有重要意义,提出的区域化分析温室内叶片湿润时间的方法,可以为模拟日光温室叶片湿润时间的空间分布提供参考。
简介:摘要 : 水肥一体化自动装备的使用能够有效提高水肥资源利用率,但需要在作业前获知作物的营养状况及水肥需求量,而通过人工手持测量仪器来获取这些信息,存在着时效性差和劳动强度大等缺点。针对以上问题,本研究以常见的作物玉米为研究对象,使用大疆精灵Ⅲ无人机携带 RedEdge-M多光谱相机在田间上空采集玉米多光谱图像,同时使用 YLS-D系列植株营养测定仪测量玉米植株的氮素和水分含量等营养信息,根据这些信息将采集的图像分为 3个等级(每个等级共包含 530幅五通道图像,其中 480幅作为训练集, 50幅作为验证集),提出了一种基于卷积神经网络的玉米作物营养状况识别方法。并基于 TensorFlow深度学习框架搭建了 ResNet18卷积神经网络模型,通过向模型输入彩色图像数据和五通道多光谱图像数据,分别训练出适合于彩色图像和多光谱图像的玉米植株营养状况等级识别模型。试验结果表明:训练后的模型能够识别玉米作物的彩色图像和多光谱图像,能够输出玉米的营养状况等级和 GPS 信息,识别彩色图像模型在验证集的正确率为 84.7%,识别多光谱图像模型在验证集的正确率为 90.5%,模型训练平均时间为 4.5h,五通道图像识别平均用时为 3.56s。该识别方法可快速无损地获取玉米作物的营养状况,为有效提高水肥资源利用率提供了方法和依据。
简介:[目的/意义]准确高效地获取马匹体尺信息是马产业现代化进程中的关键环节.传统的人工测量方法耗时长、工作量大,且会对马匹造成一定应激反应.因此,实现准确且高效的体尺参数自动测量对于制定蒙古马早期育种计划至关重要.[方法]选择Azure Kinect深度相机获取蒙古马双侧RGB-D数据,以YOLOv8n-pose为基础,通过在C2f模块中引入可变形卷积(Deformable Convolution v2,DCNv2),同时添加洗牌注意力机制(Shuffle Atten-tion,SA)模块和优化损失函数(SCYLLA-IoU Loss,SIoU)的方法,利用余弦退火法动态调整学习率,提出一种名为DSS-YOLO(DCNv2-SA-SIoU-YOLO)的模型用于蒙古马体尺关键点的检测.其次,将RGB图中的二维关键点坐标与深度图中对应深度值相结合,得到关键点三维坐标,并实现蒙古马点云信息的转换.利用直通滤波、随机抽样一致性(Random Sample Consensu...