简介:<正>三角形的"中位线"是初中数学中的一个重要知识点,也是历年中考必考的内容之一.尤其是它的性质定理在几何的求解题和证明题中应用更为广泛,中考常考常新.在大多数试题中,中位线的组成,大多不是十分明显或完整地表现出来,需要我们在解题时,能够抓住题目中的已知信息(例如已知线段的"中点")入手,通过适当手段构造出三角形(或梯形)的"中位线",然
简介:<正>新的数学课程标准指出:"数学思想蕴藏在数学知识形成、发展和应用的过程中,是数学知识和方法在更高层次的抽象与概括,如归纳、演绎、抽象、转化、分类、
简介:<正>本刊2009年第二期本文已就运用数形结合思想和整体思想解"数式题"作了归类分析研究.本期再就运用分类讨论思想、转化与化归思想以及方程思想解"数式题"的问题作进一步分析研究,以供参考.
简介:<正>《全日制义务教育数学课程标准(实验稿)》指出:"数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分."因此,数学教学要帮助学生"理解和掌握基本的数学知识和技能、数学思想方法,……."所以近几年的中考试卷中结合数学思想方法考查基础知识的试题比比皆是,其中分类讨论思想及其应用的试题尤为多见.这类题目往往难度较大,得分率偏低,其原因就是不能灵活应用分类讨论思想方法.
简介:<正>分类讨论思想是一种极其重要的数学思想方法.它是按照数学对象的相同点和差异点,将数学对象分为不同种类的思想方法,它能把较复杂的陌生的问题转化为简单的、熟悉的问题,从而使问题得到正确、圆满地解决.由于点与圆的位置关系、平行弦与圆心的位置关系、
简介:<正>"线段和角"是初中学生学习几何时最早遇到的基础知识之一.在掌握这些概念的基础上,往往还涉及到它们的相关计算问题,而在解有关它们的计算问题中,又常可以运用一些数学思想去解决,这样,不仅会收到事半功倍的解题效果,而且还会让学生在解题情境中感
简介:<正>近几年来,矩形纸片的折叠问题频繁出现在全国各地的中考数学试题中,此类问题贴近同学的认知规律,能较好考查基础知识和综合运用数学知识解决问题的能力,因此,很受命题者的青睐.但是,由于矩形折叠型试题涉及知识面广,结构独特,解法灵活多样,同时融合了丰富的数学思想和方法,所以大多数同学都感到有一
简介:<正>数学思想是从数学内容中提炼出来的数学知识的精髓,是数学知识、数学技能、数学方法的本质体现,是形成数学能力、数学意识的桥梁,是灵活运用数学知识、技能、方法的灵魂.正如数学课程标准(实验修订稿)中所指出的"数学思想蕴藏在数学知识形成、发展和应用
简介:<正>分类讨论思想就是按照一定的标准,把研究对象分成为数不多的几个部分或几种情况,然后逐个加以解决,最后予以总结作出结论的思想方法,它是中学数学中常用的一种数学思想方法
简介:<正>"运用分类讨论思想解有关三角形问题"已在上文中就基本型(即纯几何型)和结合型(即与其他几何图形相结合的动态型)问题作了分类举例说明.本文将就综合型(即函数背景下的动态几何型)问题作进一步的举
构造中位线 巧解几何题
运用数学思想解“数式题”研究
运用数学思想解“数式题”研究(续)
例谈用分类讨论思想解代数题
例谈用分类讨论思想解圆的问题
运用数学思想解“线段和角度”计算题例析
用好轴对称性,巧解折叠型中考题
运用数学思想解“不等式(组)题”分类解析(上)
例谈运用分类讨论思想解有关三角形问题
例谈运用分类讨论思想解有关三角形问题(续)