简介:提出了一种新的恒虚警检测算法SOSGO-CFAR。该算法应用检测单元采样作为选择参考单元的依据,使用了基于转换恒虚警(S-CFAR)和排序选大恒虚警(OSGO—CFAR)的复合算法。文章给出了该算法在均匀背景中的数学分析。并在均匀背景、杂波边缘和多目标情况下,用MonteCarlo方法进行了仿真分析。结果表明,该检测器既具有均匀背景下和CA-CFAR相近的良好性能,在杂波边缘环境中,具有接近OSGO-CFAR的性能,且在多目标环境中,其性能明显好于S-CFAR。
简介:当跟踪目标属于隐身目标、低空目标或处于强杂波和干扰环境,都会导致雷达的目标检测概率降低,丢失率较高。因此,本文着重研究PHD算法在检测概率较低的情况下跟踪稳定性不佳的缺陷,找出了一种适用于低目标检测概率的L-GMPHD滤波,通过对前一时刻状态估计值外推,若发生漏检,则将外推值加入当前时刻状态估计值中,确保了目标的状态估计不被裁剪去除。从MATLAB仿真结果可知,L-GMPHD滤波器处于检测概率较低的情况时,能够明显改善目标跟踪的稳定性。该方法能够保持高精度的多目标跟踪,具有良好的工程应用前景。