简介:结合支持向量机和神经网络各自的优点,提出了一种新颖的自适应支持向量回归神经网络(SVR—NN).首先,利用支持向量回归方法确定SVR—NN的初始结构和初始化权值,基于支持向量自适应地构造SVR—NN神经网络的隐层节点;然后,使用退火过程的鲁棒学习算法更新网络节点参数和权值.为了验证所提出方法的有效性,给出了自适应SVR-NN应用于非线性动态系统辨识的实例.仿真结果表明,与以前的神经网络方法相比,基于SVR-NN网络的辨识方案能获得相当好的性能,它具有很快的收敛速度.因此,自适应的SVR—NN为非线性系统辨识提供了极有吸引力的新途径.
简介:为了解决当前工业仪表示数在采图环境恶劣和样本数据量大的情况下所导致的算法识别不准确的问题,分别从特征学习与机器学习识别的角度出发,提出了基于特征学习与支持向量机的工业仪表状态识别算法。首先,提取仪表图像区域字符的几何特征和颜色特征,对这些提取出的特征进行归一化处理,设计出特征提取分析算子,达到精准提取有用特征数据的目的。然后,基于支持向量机,计算出分类器的最优平面和约束条件,从而建立仪表识别算子,进一步精确识别仪表示数。最后,基于软件开发环境QT实现算法,并系统集成。实验测试结果显示:与当前仪表识别技术相比,此算法拥有更高的准确性与稳定性,能够准确地根据仪表数字识别出电压,从而确定仪表工作状态是否正常。