简介:在科学研究、工程技术中,常常需要将某些实际问题转化为二阶常微分方程问题,因此研究不同类型的二阶常微分方程的求解方法具有十分重要的意义。介绍二阶常系数线性方程的若干种求解方法,包括多项式法、升阶法、积分法、微分算子法等等。这为我们今后进一步研究常微分方程提供了基础。
简介:本文给出了Riemann(黎曼)积分Lebesgue(勒贝格)积分和Henstock积分的关系,并从度量空间加以阐明
简介:在复变函数中,根据柯西—古萨定理,若f(Z)=u(x,y)+iv(x,y)解析,则积分∫_гf(z)dz=∫_гudx-vdy+i∫_гvdx+udy(1)与路径无关(本文中函数的解析性和曲线积分的路径无关性,都是对一定区域而言的,以下不再重复声明),从而,曲线积分∫_гudx-vdy=Re∫_гf(z)dz(2)∫_гvdx+udy=Im∫_гf(z)dz(3)都与路径无关。与路径无关的曲线积分和解析函数的积分是否有一定的内在联系呢?(2)和(3)式表明至少有一些与路径无关的曲线积分,可以用解析函数的积分表出。本文讨论了曲线积分