学科分类
/ 1
20 个结果
  • 简介:针对大范围运动下弹性矩形,采用有限元技术和Lagrange方程建立了系统刚柔耦合一次近似动力学方程组.不同于传统动力学建模方法,本文采用两个弧长变量和一个笛卡尔坐标变量来描述的变形,利用有限元方法离散,在动力学方程中得到了动力刚度项.数值仿真表明,在大范围运动下,传统的动力学模型不能正确的预示系统动力学行为;而本文动力学模型能够较好的预测系统的动力学行为,且比采用假设模态离散板变形的方法更为精确.

  • 标签: 大范围运动 动力刚化 LAGRANGE方程 动力学行为 动力学模型 动力学方程组
  • 简介:研究由形状记忆合金与普通钢材制成的硬夹心的振动控制方法,求出硬夹心夹层的平衡方程,并分析了变厚度智能夹心的振动问题.算例表明该方法对于夹心的振动能够有效地控制.

  • 标签: 简支 变厚度 硬夹心夹层板 形状记忆合金
  • 简介:建立了双参数弹性地基上的正交异性矩形薄板自由振动位移函数微分方程,并得到其一般解.这可用以精确地求解在任意边界条件下的自由振动问题.以四边固定的正方形为例进行了分析,计算过程简单,便于实际应用.亦适用于求解单参数弹性地基和各向同性情形。

  • 标签: 弹性地基 自由振动 正交异性板 频率
  • 简介:研究了粘弹性夹层圆的自由振动特性.基于经典弹性薄板理论和Kelvin-Voigt粘弹性本构方程,建立了粘弹性夹层圆振动控制方程.采用分离变量法导出了粘弹性夹层圆的自然频率及振型解析表达式,计算了固支和简支粘弹性夹层圆的自然频率,并与有限元计算结果进行比较;讨论了粘弹性夹层圆的夹心层比率对自然频率及衰减系数的影响.研究表明:(1)随着夹心层厚度的增大,系统频率先增大后减小,高阶时该趋势表现更为明显;(2)随着夹心层厚度的增大,衰减系数一直增大,高阶时该趋势表现更为明显.

  • 标签: 粘弹性夹层圆板 自由振动 Kelvin-Voigt 分离变量法
  • 简介:研究了正六角形蜂窝夹层的非线性动力学问题.考虑高阶横向剪切变形和横向阻尼的影响,建立了面内激励和横向外激励联合作用下的四边简支蜂窝夹层的非线性偏微分运动控制方程.综合运用Galerkin方法和数值方法,模拟不同激励作用下的混沌运动,得到二维相图、二维波形图和频谱图.研究结果表明:随着激励的增加,系统会重复呈现周期运动、混沌运动、周期运动的变化规律.

  • 标签: 蜂窝夹层板 高阶剪切效应 非线性动力学 混沌
  • 简介:随着MEMS技术工艺的发展,微型结构在工程领域的应用越来越广泛.对于微型结构,经典连续介质力学理论的本构关系中不包含任何特征长度尺度,不能反映结构在微米尺度下的尺寸效应.本文基于VonKarman大变形理论和一阶剪切变形理论,把考虑尺寸效应的应变梯度理论推广至微型Mindlin的非线性问题.分别计算微结构的应变能,包括宏观变形应变能和微观变形应变能两部分,结合微型Mindlin板结构的动能及外力功,代入Hamilton原理,得到了微型Mindlin在大变形情况下的非线性动力学方程及边界条件.

  • 标签: 非线性 MINDLIN板 应变梯度 尺度效应 HAMILTON原理
  • 简介:研究了重物对圆的冲击问题.采用伽辽金原理及拉普拉斯变换推导出了物体对圆的冲击力解析表达式.通过数值实例,讨论了圆半径、厚、缓冲垫刚度、重物下落高度、重物质量等因素对重物对圆冲击力影响,并绘出了冲击力随时间的变化曲线.算例表明:用该法求冲击力问题,不但比传统的Hertz接触理论更接近真实情况,而且计算简便,便于工程设计人员应用.

  • 标签: 冲击力 圆板 重物 计算研究 HERTZ接触理论 撞击
  • 简介:采用弹性理论建立了功能梯度材料的静力平衡方程,利用静力平衡方程确定了功能梯度材料的中性面位置,在此基础上推导出了功能梯度材料在均匀温度场中的非线性振动及屈曲微分方程组,求得了功能梯度材料圆的非线性振动及屈曲的近似解,讨论分析了中性面位置、梯度指数、温度等因素对功能梯度材料圆非线性振动及屈曲的影响.把该方法计算结果与有限元计算结果进行了比较,验证了该方法的计算结果是可靠的.算例分析表明,中性面位置对均匀温度场中功能梯度材料圆的非线性振动及屈曲有一定影响.

  • 标签: 功能梯度 材料 非线性 振动 屈曲 温度
  • 简介:采用弹性理论建立了功能梯度材料的静力平衡方程,利用静力平衡方程确定了功能梯度材料的中性面位置,在此基础上推导出了功能梯度材料在均匀温度场中的非线性振动及屈曲微分方程组,求得了功能梯度材料椭圆的非线性振动及屈曲的近似解,讨论分析了中性面位置、梯度指数、温度等因素对功能梯度材料椭圆非线性振动及屈曲的影响.把该方法计算结果与有限元计算结果进行了比较,验证了该方法的计算结果是可靠的.算例分析表明,中性面位置对均匀温度场中功能梯度材料椭圆的非线性振动及屈曲有一定影响.

  • 标签: 功能梯度 材料 椭圆板 非线性 振动 屈曲
  • 简介:基于有限元基本理论,用ANSYS软件对(P/FGM/P)型的带压电层的功能梯度材料悬臂板的结构进行了模态分析,这里选用SHELL99单元类型.给出(P/FGM/P)型的带压电层FGM悬臂矩形的振动模态图,得到固有频率,并且对前8阶模态做模态分析,讨论了其对结构的动力学行为的影响.通过模态分析可以得知带压电层FGM悬臂矩形的模态振型有横向振动,扭转振动,拉伸振动,横向振动以前两阶模态为主,分析结果对系统的结构设计与优化以及振动特性研究提供了有效的依据.

  • 标签: 功能梯度材压电材料 悬臂板 ANSYS 模态分析
  • 简介:把柔性梁的离散坐标法——有限段法扩展到规则柔性中,视柔性为带关节柔性(刚度、阻尼)的多刚体系统,详细阐述了离散坐标法的基本思想、理论依据,采用牛顿-欧拉方法建立了动力学方程,借助通用有限元软件和动力学仿真程序验证了离散坐标法可以解决具有几何非线性变形的规则柔性构件的多体系统动力学问题。

  • 标签: 离散坐标法 柔性板 多刚体模型 动力学方程
  • 简介:研究了在四边简支的边界条件下,正交各向异性矩形叠层在横向简谐激励作用下的非线性主共振及其稳定性问题.在给出了正交各向异性叠层的振动微分方程的基础上,利用伽辽金法导出了相应的达芬型非线性强迫振动方程.应用平均法对主共振问题进行求解,得到了系统在稳态运动下的幅频响应方程.基于李雅普诺夫稳定性理论,得到了解的稳定性判定条件.作为算例,分别给出了不同条件下,系统运动的幅频响应曲线图、振幅-激励幅值响应曲线图和动相平面图,并对解的稳定性进行了分析,讨论了各参数对系统非线性振动特性的影响.

  • 标签: 正交各向异性 叠层板 主共振 稳定性 平均法
  • 简介:将微分-积分型参数振动方程组转化成微分型,且基于增量谐波平衡法的一般应用途径,分析了受面内周期激励的粘弹性的非线性动力稳定特性,揭示了主要动力不稳定区域的整体下移以及缩小和标准线性固体材料的粘性参数、的振动频率之间的关系.同时给出了增量谐波平衡法直接应用于非线性微分-积分型参数振动方程的简化途径,并通过两种应用途径所得结果的对比,检验了这种简化途径的有效性.

  • 标签: 粘弹性板 非线性 动力稳定性 增量谐波平衡法
  • 简介:研究了非线性地基上正交异性矩形的非线性固有热振动.采用常规的L-P法分析非线性地基上正交异性矩形的非线性热振动难以得到高精度的近似解,为此,先对该强非线性振动系统进行参数变换,将该强非线性振动系统转化为弱非线性振动系统.然后采用改进的L-P法进行求解,得到了强非线性振动系统的高精度近似解.此外,讨论了温度、地基特征参数、长宽比等因素对非线性地基上正交异性矩形非线性热振动固有频率的影响,得到了非线性地基上正交异性矩形热振动频率随温度下降、地基特征参数变大、长宽比变大而增大的结论.

  • 标签: 非线性 地基 正交异性 热振动
  • 简介:蜂窝夹层结构因其良好的力学特性,在众多工程领域具有非常广泛的应用.本文建立了悬臂边界条件下,蜂窝夹层的动力学模型并研究其非线性动力学行为.选取文献中更加接近实体有限元解的等效弹性参数公式对蜂窝芯层进行等效简化,得到六角形蜂窝芯的等效弹性参数.基于Reddy高阶剪切变形理论,应用Hamilton原理建立悬臂式蜂窝夹层在受到面内激励和横向激励联合作用下的偏微分运动方程.然后利用Galerkin方法得到两自由度非自治常微分形式运动方程.在此基础上,通过对悬臂式蜂窝夹层进行数值模拟分析系统的非线性动力学.结果表明面内激励和横向激励对系统的动力学特性有着重要影响,在不同激励作用下系统会出现周期运动、概周期运动以及混沌运动等复杂的非线性动力学响应.

  • 标签: 蜂窝夹层板 悬臂 非线性动力学 周期 混沌
  • 简介:研究了电磁与机械载荷共同作用下梁式薄板的非线性超谐波共振问题.在给出薄板的电磁弹性运动基本方程及电磁力表达式的基础上,推得了横向稳恒磁场和机械载荷共同作用下梁式薄板的振动方程;应用伽辽金积分法,进一步导出了相应的非线性振动控制微分方程.采用多尺度法进行求解,得到了稳态运动下的幅频响应方程.最后,通过算例,给出了相应的幅频响应曲线图和时间历程图,分析了厚、磁场及激励幅值对系统振动的影响.

  • 标签: 磁弹性 导电梁式板 磁场 非线性超谐波共振 多尺度法 机械载荷
  • 简介:研究了轴向流作用下状叠层结构在非线性弹性支承下的分岔与混沌行为,假设叠层结构中各在同一时刻有相同的变形,同时考虑三次非线性弹性支承对状梁的影响,系统的非线性偏微分方程经过转化可表示为一阶的状态方程。数值迭代计算表明,状叠层结构具有丰富的非线性动力学现象,通过对几个关键系统参数的研究,发现状梁结构的振动存在复杂的分岔现象和混沌响应,系统是经由经典的倍周期分岔通向混沌的。

  • 标签: 板状叠层结构 分岔 混沌 流动压力
  • 简介:研究了横向气动载荷和参数激励联合作用下复合材料悬臂外伸矩形在伸出过程中的非线性动力学问题.根据Reddy的高阶剪切层合板理论,应用Hamilton原理建立了外伸在横向气动力和参数激励作用下的非线性动力学方程,其中横向气动力采用一阶活塞气动力.然后应用Galerkin方法对系统偏微分形式的非线性方程进行离散,得到了一组时变系数的非线性动力学方程.在此方程的基础上,对复合材料悬臂外伸进行了数值模拟分析,讨论了外伸速度对悬臂外伸非线性动力学特性的影响.

  • 标签: 复合材料悬臂外伸板 高阶剪切理论 活塞理论 HAMILTON原理 非线性动力学
  • 简介:以两对边简支另两对边自由的功能梯度材料为研究对象,首先建立了考虑材料物性参数与温度相关的、在热/机械载荷共同作用下的几何非线性动力学方程,采用渐进摄动法对系统在1:1内共振-主参数共振-1/2亚谐共振情况下的非线性动力学行为进行了摄动分析,得到系统的四自由度平均方程,并对平均方程进行数值计算,分析外激励对系统非线性动力学行为的影响,发现在一定条件下通过改变外激励可以改变系统的运动形式,产生混沌运动.另外,第二阶模态的幅值远比第一阶模态的幅值大,这应该是两阶模态耦合产生内共振的结果,因此,研究该类结构的非线性动力学行为时不应该只考虑一阶模态,而应考虑到前两阶甚至更多阶模态的相互作用,以便于更好地利用或控制其运动形式.

  • 标签: 功能梯度材料板 复合边界条件 混沌运动 内共振
  • 简介:随着航空航天事业的发展,对各种材料性能的要求也越来越高.而蜂窝夹层在结构和性能上具有许多优点,已在航空航天等领域应用广泛,并在一些重要结构中充当承力部件,但由于其特殊的蜂窝结构,相对于一般的,在受力时会发生比较大的变形,所以用非线性理论研究蜂窝夹层板结构,并考察不同参数对非线性振动特性的影响,具有重要的理论和实际意义.如今,蜂窝夹层的几何非线性问题已引起更多学者的关注.在一般均质理论的假设下,一些学者已经研究了各项同性蜂窝夹层的非线性动力学特性.研究了一类受面内激励和横向外激励联合作用下的四边简支蜂窝夹层在主参数共振-1:2内共振时的双Hopf分叉问题.首先利用多尺度法得到系统的平均方程,然后结合分叉理论得到了系统的分叉响应方程,根据对分叉响应方程的分析,得到了六种不同的分叉响应曲线并给出了系统产生双Hopf分叉的条件.利用数值方法得到系统在参数平面的分叉集,通过对不同分叉区域的分析发现,随着参数的变化系统平衡点会分叉为两类周期解,随后周期解会通过广义静态分叉为准周期解,或者通过广义Hopf分叉为3D环面.

  • 标签: 双Hopf分叉 蜂窝夹层板 不变环面 周期解