简介:研究非齐次边界条件下,含有p—Laplacian算子的微分方程解的存在性,应用上下解方法,得到边值问题可解性的充分条件.
简介:利用自反Banach空间中弱紧算子的因子分解技巧,对于一类非齐次项具有连续Lipschitz扰动的柯西问题,当其齐次项算子生成强连续算子半群且具有紧豫解式限制时,证明了方程强解的存在性.
简介:建模问题是历年中考的常考题,建模问题之重要,正如法国著名数学家笛卡尔所说:'我们所解决的每一个问题,将成为一个模式,以用于解决其他问题'.利用一次函数或反比例函数、方程(组)、不等式、三角函数等知识,设计出不同的方案或制定一个最佳方案解决实际问题,是中考建模问题的重要内容.解这类问题的关键是通过对问题原始形态的分析、联想和抽象,将实际问题转化为一个数学问题,即构建一个数学模型.
简介:本文利用构造生成函数的方法给出常系数线性非齐次递推关系:h(n)=a1h(n-1)+…+akh(n-k)+f(n)解的-般公式及其应用,其中f(x)为一般函数.本文的方法是对文献[1][2]中特殊形式f(x)=βnP1(n)求解的一种推广,此方法更具有一般性.
简介:整数阶常微分方程的古典解法特征根方法对于分数阶常微分方程能不能适用?通过分数阶导数的积分下限取-∞,证明了指数函数f(t)=eπ的Riemann-Liouville型α阶导数为raert从而对Riemann-Liouville型分数阶非齐次常微分方程可以通过特征根方法求得它的通解。分数阶常微分方程在通解中所含的相互独立的任意常数个数与一般传统的整数阶微分方程的规律不同,但却能相容的。
简介:给出了求一类高阶非齐次线性微分方程(组)特解的矩阵解法.即由对应齐次微分方程(组)的n个特解以及非齐次微分方程(组)的自由项构成某线性方程组的增广矩阵,并对该增广矩阵进行初等行变,换,即可求得非齐次微分方程(组)特解的一种简便方法.
简介:研究了地震作用下非线性地基中桩基的3次超谐波共振问题.从地基桩中抽象出力学模型,考虑地基的非线性因素,运用Hamilton变分原理建立了桩基的非线性控制方程.利用Galerkin方法离散上述方程,基于多尺度摄动法研究了地震作用下非线性地基中桩的3次超谐波共振问题.以某嵌岩圆形桩为例,研究了地基土层厚度、剪切波速度及频率比对地震力的影响,数值模拟了非线性地基桩的3次超谐波共振响应,探讨了地震力、地基弹性及非弹性系数对超谐波幅频响应的影响,最后研究桩基产生3次超谐波共振时的时间历程曲线.结果表明,当地震波频率约等于桩基固有频率的1/3时,容易激发桩的3次超谐波共振响应;桩基的3次超谐波共振响应随着地震力、非弹性系数的增大而变得更加显著,随着弹性系数的增大而逐渐变小.