简介:摘 要:文章采取分类讨论的思想并结合具体实例分别介绍了相似变换法、特征多项式法、乘法结合律方法、二项式展开法、分块对角矩阵法、数学归纳方法、 标准形法等多种方法。其中,数学归纳法适用于计算有规律形的矩阵;二项施展开法适用于可以拆分为计算比较简单的矩阵加法的矩阵;特征多项式法适用于特征多项式求解比较简单的矩阵;相似变换法适用于可以化为对角矩阵的矩阵;乘法结合律法适用于 的矩阵;分块对角矩阵法适用于阶数较高可以分成分块对角形的矩阵 . 这些方法的研究为 n阶方阵的高次幂的
简介:讨论Banach空间X上二阶抽象微分方程d^2/(dr^2)u(t,x)=Au(t,x);u(0,x)=x,d/(dt)u(0,x)=0,x∈X的不适定情况,这里A是X上的闭算子;引进空间Y(A,k),即使得二阶抽象微分方程有次弱解v(t,x),且满足esssup{(1+t)^-k|d/(dt)〈v(t,x),x^*〉|:t≥0,x^*∈X^*,|x^*‖≤1}〈+∞的x∈X的全体,及空间H(A,ω),即使得二阶抽象微分方程有次弱解v(t,x),且满足的x∈X的全体.证明了如下结论:Y(A,k)和H(A,ω)均为Banach空间,且Y(A,k)和H(A,ω)均连续嵌入X;A在Y(A,k)上的限制算子A|Y(A,k)生成一个一次积分Cosine算子函数{(t))t≥0,满足limh→0+^-1/h‖C(t+h)-C(t)‖Y(A,k)≤M(1+t)^k,任意t≥0;A在H(A,ω)上的限制算子A|H(A,ω)生成一个一次积分Cosine算子函数{C(t)}t≥0,满足limh→0+^-1/h‖C(t+h)-C(t)‖H(A,ω)≤≤Me^ωt,任意t≥0.
简介:整数阶常微分方程的古典解法特征根方法对于分数阶常微分方程能不能适用?通过分数阶导数的积分下限取-∞,证明了指数函数f(t)=eπ的Riemann-Liouville型α阶导数为raert从而对Riemann-Liouville型分数阶非齐次常微分方程可以通过特征根方法求得它的通解。分数阶常微分方程在通解中所含的相互独立的任意常数个数与一般传统的整数阶微分方程的规律不同,但却能相容的。
简介:二阶变系数齐次线性方程:d^2y/dx^2+p(x)dy/dx+q(x)y=0,(其中p(x),q(x)εc′)……(1)与相应的黎卡提方程:dy/dx+p(x)y+y^2+q(x)=0……(2)的解之间存在着重要的关系,即定理1和定理2,开辟了方程(1)和(2)关系研究的途径,并作出了九个推论,其中若干个重要的结论与文中结论相同。