简介:研究了改进的Morris—Lecar(ML)神经元模型的放电节律模式和模式转化的峰峰间期(interspikeintervals,ISIs)分岔结构,通过调节模型中的两个重要参数μ和Vk,发现对于固定的μ,改变Vk,神经元呈现出从倍周期级联分岔到加周期分岔的复杂结构,放电模式从静息态转化为周期、混沌簇放电状态;若选取此分岔过程中的某一Vk值,对μ进行调节,呈现出的ISIs分岔结构在很大程度上取决于单个神经元的放电节律模式,且单个神经元处于混沌簇放电时,肛带来的分岔动力学行为较丰富.由于神经元能够通过动作电位对信息进行编码,所以我们推测,研究神经元的放电节律模式和动作电位的ISIs分岔结构能为理解神经信息编码机制提供线索.
简介:建立了飞轮调速器反馈控制系统的动力学方程,利用系统的相图和Poincar6映射图分析了系统的混沌形成过程.通过对飞轮调速器反馈控制系统增加一个比例微分反馈控制器,利用它控制系统从混沌运动转化为周期运动.数值仿真表明了该控制方法在飞轮调速器反馈控制系统的混沌控制中的有效性与可行性,可利用适当的控制强度镇定系统中不稳定的周期轨道.
简介:利用平面弹性与板弯曲的相似性理论,用直接法研究辛几何形态下的薄板弯曲问题。当薄板对边边界条件形式不同时,将其进行降阶形成对偶方程组,再利用分离变量法把阅题转化为本征值问题求解。通过奉征函数、辛正交关系、展开求解等手段得到了薄板的解析解。算例表明辛求解的有效性与快速收敛性。
简介:基于车辆-轨道耦合动力学和空气动力学提出了一种快速计算横风下高速列车系统动力学行为的平衡状态方法.首先,忽略轨道不平顺并利用流固耦合联合仿真方法计算横风下高速列车的平衡状态;然后,将平衡状态下的气动力加载到车辆一轨道耦合动力学模型并计算高速列车动力学响应.利用建立的平衡状态疗法,研究了列车在速度为13.8m/s的横风下以350km/h速度运行时的流固耦合动力学行为.比较了平衡状态方法和联合仿真方法两种方法下列车姿态、安全性和舒适性指标的差异,计算结果差别在3.26%以内.研究结果表明:平衡状态方法计算横风下高速列车流固耦合的效率更高.
简介:PER和TIM是果蝇两个重要的生物钟蛋白.以往的研究一直认为PER和TIM是在细胞质中结合为二聚体并以二聚体的形式进入细胞核.但2006年PabloMeyer等人的实验研究表明,PER/TIM复合物在细胞质中分离,然后PER和TIM在很短的时间内独立进入细胞核.根据该项实验结果,我们对果蝇昼夜节律调控模型进行了修正,修正模型反映了per和tim基因的转录翻译及蛋白质的翻译后修饰过程,二次磷酸化的蛋白质PER(P2)、TIM(他)分别独立进入细胞核并参与后续的调控过程.计算了修正模型的振荡周期并由此确定了新模型所引入的参数值.对修正模型的振荡节律进行数值分析,发现修正模型振荡节律在DD、LD条件下均产生了近于24h的持续周期振荡而在LL条件下呈现出振荡衰减,这些结果与原模型相似,反映出所建模型的合理性.但修正模型对参数对称性的依赖性则更加强烈,具体解释还有待于进一步的工作.
简介:提出了基于模糊逻辑控制扭矩分配策略,建立了各功能组件模型.并利用ADVISOR2002仿真平台。完成了该模糊逻辑扭矩控制策略和电气辅助控制策略仿真比较.结果表明,本文提出的模糊逻辑控制策略对提高混合动力汽车的动力性和燃油经济性。改善尾气的排放有明显的作用.
简介:研究了非高斯列维噪声作用下非线性系统的渐近线性化方法和Lyapunov指数.利用渐近线性化方法将非线性系统线性化,通过系统的响应轨迹验证了该方法的有效性.通过广义的伊藤法则公式,推导出了列维噪声驱动下Lyapunov指数的一般表达式.给出当参数变化时,非线性系统的随机稳定性分析.
简介:通过欧拉方法可将Duffing-Holmes方程变换为离散非线性动力学系统,得到标准Holmes映射.研究该映射不动点的存在性与稳定性条件,并运用中心流形定理分析映射的Pitchfork分支,Flip分支和Hopf分支的存在性,具体给出了发生相应分支所满足的参数条件.此外,证明了映射存在Marotto意义下的混沌,最后用数值模拟验证了所得理论结果.