简介:本文对长短波相互作用方程组作行波变换后转化成第一种椭圆方程,利用第一种椭圆方程的解和Bcklund变换,构造了长短波相互作用方程组的无穷序列新解.这里包括了椭圆函数解、双曲函数解、指数函数解和有理函数解.
简介:正如傅里叶变换采用正弦基,单频信号能够在频域形成峰值,分数阶Fourier变换采用线性调频基,线性调频(LFM)信号能够在分数阶Fourier域上实现聚焦,利用此聚焦性通过搜索峰值可实现LFM信号检测和参数估计.通常采用步进式搜索方法,效率低下.为了克服该缺点,通过对分数阶Fourier域优化问题本质的研究,将混沌优化算法引入到分数阶Fourier域极值搜索中.仿真结果表明:本文的方法优于传统的步进式搜索法.
简介:研究了改进的Morris—Lecar(ML)神经元模型的放电节律模式和模式转化的峰峰间期(interspikeintervals,ISIs)分岔结构,通过调节模型中的两个重要参数μ和Vk,发现对于固定的μ,改变Vk,神经元呈现出从倍周期级联分岔到加周期分岔的复杂结构,放电模式从静息态转化为周期、混沌簇放电状态;若选取此分岔过程中的某一Vk值,对μ进行调节,呈现出的ISIs分岔结构在很大程度上取决于单个神经元的放电节律模式,且单个神经元处于混沌簇放电时,肛带来的分岔动力学行为较丰富.由于神经元能够通过动作电位对信息进行编码,所以我们推测,研究神经元的放电节律模式和动作电位的ISIs分岔结构能为理解神经信息编码机制提供线索.