简介:用一个分段线性单峰映射描述了二次映射Feigenbaum吸引子的数学结构,证明了存在一个周期2n的正则Fμ-圈嵌套序列,由其生成的吸引的极小Cantor集与单边符号空间的一个所谓"加法器"拓扑共轭.对现有结果作了若干补充和简化证明.
简介:基于Lü混沌系统,构造了一个新的四维超混沌系统.分析了该系统平衡点的性质、超混沌吸引子的相图、系统的分岔图和Lyapunov指数谱等基本动力学特性.数值模拟结果表明,新的四维系统随着新引入的参数变化能够在周期态、复杂周期态、拟周期态、混沌态及超混沌态之间转变.利用线性反馈控制法讨论了该超混沌系统不稳定平衡点的镇定,数值模拟结果与理论分析一致.
简介:在文[1]的基础上,得到了二维广义的Ginzburg-Landau方程的指数吸引子的存在性。
简介:本文主要讨论了高阶Kirchhoff方程的指数吸引子,对于低阶的Kirchhoff方程的指数吸引子,有着广泛的研究,本文在低阶类型方程研究的基础上,研究了高阶Kirchhoff类型方程的指数吸引子.首先,对于高阶Kirchhoff方程中的非线性项,进行了合理的假设,运用了广义Gronwall不等式,Young不等和Poincare不等式,结合Sobolev空间理论,证明了该方程的动力系统的Lipschitz连续性,离散的挤压性质,然后获得了指数吸引子.
简介:本文研究了一类二维非线性Schrodinger方程解的有限维行为,我们得到了此方程存在吸引子,并得到了此吸引子维数的上界估计
简介:摘要 : 本文主要讨论了高阶 kirchhoff方程的整体吸引子,对于低阶 kirchhoff方程的整体吸引子,已有相当的研究 .本文在低阶型 kirchhoff方程研究的基础上,研究了一类广义非线性高阶 kirchhoff型方程的整体吸引子 .首先,在对高阶 kirchhoff方程中的非线性项做出合理的假设下,得到方程的整体解和吸收集,然后由整体吸引子的判定定理 (渐近紧性 ),得到此类高阶 kirchhoff方程的整体吸引子 .