学科分类
/ 1
11 个结果
  • 简介:制导炮弹控制系统要求炮弹飞行姿态测量信息具有良好的准确性和实时性。为解决制导炮弹飞行姿态的高精度滤波估计问题,根据外弹道攻角运动方程和MEMS角速度陀螺测量方程分别建立姿态角滤波系统状态模型和量测模型。考虑实际陀螺随机白噪声的影响,结合弹载全球定位系统信息及地面弹道试验数据,并利用非线性卡尔滤波估计方法,对制导炮弹飞行姿态进行了滤波估计。为提高滤波估计效率,对比了Unscented卡尔滤波和一种混合卡尔滤波两种非线性滤波估计方法,滤波估计结果表明两种方法得到的姿态精度均能满足测量要求,而运算效率后者相对前者可提高约6%,稳定性也较好,因此在工程上更实用。

  • 标签: 制导炮弹 姿态角 MEMS陀螺 卡尔曼滤波
  • 简介:双天线GPS提供的载体姿态信息与惯性导航系统信息进行融合可提高组合导航系统的性能。由于在实际应用中,GPS接收机可能会受到某种干扰无法提供舰船航向信息,从而降低传统卡尔滤波器的性能。因而提出了一种新的基于模糊逻辑控制的自适应卡尔滤波器。改进后的卡尔滤波器使用两个模糊逻辑控制器来调整两个系统的组合模式,并且根据卡尔滤波器的内部状态、GPS工作状态和舰船运动状态来计算卡尔增益。通过使用INS和GPS的实测数据验证,这种基于模糊逻辑控制的自适应卡尔滤波器能有效的提高INS/GPS组合导航系统的性能。

  • 标签: 组合导航 信息融合 模糊逻辑 自适应卡尔曼滤波器
  • 简介:针对在4级海况下船体大幅度晃动,甚至丢失GPS信号的复杂环境,常规算法会导致姿态测量精度急剧下降的情形,为‘动中通’中的航姿系统设计了一套姿态融合算法。在GPS有效时,卡尔滤波的观测量引入双天线GPS输出的航向角,解决航向角观测性弱和估计不准的问题,同时引入互补滤波得到的陀螺修正量,提高了水平姿态角的可观性,融合两种算法提高了解算精度。在GPS无效时,通过互补滤波,抑制陀螺漂移,输出高精度水平姿态角,配合天线所接收信号的强度使‘动中通’正常工作。为验证算法的有效性,进行了动态实验,实验结果表明:该算法在GPS有效的情况下能保证俯仰滚动角(RMSE标准)精度在0.2°以内,航向角精度在0.5°以内,在GPS无效情况下也可使俯仰和滚动角精度长时间维持在0.3°以内,具有一定的工程应用价值。

  • 标签: 动中通 姿态测量 卡尔曼滤波 互补滤波
  • 简介:对于具有一定机动能力的弹道式再入目标跟踪问题,稳定性好、鲁棒性强、收敛精度高的估计方法是保证跟踪精度的关键。针对再入运动模型和测量体制的强非线性以及目标机动引起的滤波精度下降问题,提出一种将强跟踪滤波(STF)和基于三阶球面-向径容积规则的容积卡尔滤波(CKF)相结合的强跟踪-容积卡尔滤波(STCKF)。通过将强跟踪算法中的自适应渐消因子引入到滤波时间更新和测量更新方程中,在线实时调整滤波增益矩阵,能有效避免模型失准造成的滤波性能下降,使该算法兼具CKF滤波精度高和STF鲁棒性强的优点。通过数学仿真表明,改进后的STCKF可以实现对具有机动的弹道式再入目标的高精度跟踪,相对于CKF精度提高50%,并且具有更强的鲁棒性和自适应能力。

  • 标签: 弹道式再入目标跟踪 容积卡尔曼滤波 自适应渐消因子 非线性系统
  • 简介:在基于DSP的低成本MINS/GPS组合导航系统中,针对DSP的实型变量位数不足的缺点,在卡尔滤波器的设计中同时运用了状态与偏差解耦算法和平方根算法,并推导出状态与偏差解耦-平方根算法的具体公式,既能减少计算量,又能增强滤波的数值稳定性.

  • 标签: 组合导航 卡尔曼滤波 状态与偏差解耦 平方根算法 DSP
  • 简介:—针对现有的自适应卡尔滤波算法实时性不强、结构繁杂,本文研究了在惯导与GPS组合系统中应用一种修正的自适应卡尔滤波算法,并与常规卡尔滤波算法作了比较。仿真结果表明,这种算法具有结构简单、高效率和精度高等优点,不失为一种实用而有效的滤波算法。

  • 标签: 惯性导航系统 组合导航系统 自适应卡尔曼滤波器
  • 简介:为了有效地消除重力异常畸变对海洋重力仪测量精度的影响,得到更高精度的重力异常测量值,根据随机过程理论,分析了重力异常状态方程,并对H∞滤波算法和自适应卡尔滤波算法进行了理论对比分析,将其应用到消除重力异常畸变系统中.为了避免滤波发散,自适应卡尔滤波采用降阶的Sage-Husa算法.理论分析和仿真实验表明:H∞滤波算法和自适应卡尔滤波算法都具有较好的滤波收敛特性,并能在一定程度上有效地消除重力异常畸变对重力异常测量精度的影响,但自适应卡尔滤波的性能优于H∞滤波.

  • 标签: H∞滤波 自适应卡尔曼滤波 重力异常畸变 海洋重力仪 测量精度 重力异常状态方程
  • 简介:针对自主驾驶车辆长时间导航精度要求难以满足的问题,建立了GPS与微惯性导航系统的组合导航滤波模型,在位置观测的同时引入姿态信息,提高了导航精度。在此基础上提出了基于权值矩阵的模糊自适应卡尔滤波算法,该算法通过模糊控制器自适应地改变每个观测量的权值,得到权值矩阵引入卡尔滤波器实现自适应滤波。仿真和实验结果表明,所提出的权值矩阵模糊卡尔滤波性能优于衰减因子自适应卡尔滤波,特别是在GPS信号失真及噪声先验统计特性不可知的情况下,其定位精度能够保证在1m之内。

  • 标签: 组合导航 微惯性导航系统 权值矩阵 自适应卡尔曼滤波
  • 简介:TNNS(真航向导航系统)由MS860接收机、INS及处理数据的PC/104架构的嵌入式工控机构成.针对TNNS推导了INS(惯性导航系统)的误差模型,提出了适合于TNNS的降阶扩展卡尔滤波算法组合GPS和INS。系统在东海作了三次海试,软件及滤波算法平台由C/C++编制.海上试验表明,组合滤波后,INS的位置误差由i00m降低到40m以下;进行最优化滤波后的航向误差α由原来的0.105°减小为0.034°,纵横摇的误差也大幅减小.整个海试结果表明,在TNNS中组合GPS/INS采用的降阶扩展卡尔滤波算法,大幅提高了系统精度和可靠性.

  • 标签: GPS/INS 组合导航系统 误差模型 降阶扩展卡尔曼滤波
  • 简介:为了提高标准Cubature卡尔滤波(CKF)的稳定性和鲁棒性,提出一种改进的多重渐消H∞滤波cubamre卡尔滤波算法。首先基于系统状态的可观测性给出多重渐消因子矩阵求解过程,提高滤波算法的稳定性,抑制滤波发散;其次,引入H∞鲁棒思想,构造多重渐消H∞滤波Cubature卡尔滤波器;最后,提出采用一种奇异值分解的矩阵分解策略代替标准Cubature卡尔滤波中的Cholesky分解,进一步提高算法的数值稳定性。实际GPS/INS组合导航实验表明,改进的多重渐消H∞滤波Cubature卡尔滤波算法不仅能有效抑制滤波发散提高算法的稳定性,而且对观测野值具有更高的鲁棒性;提出的新算法与标准CKF算法相比,XYZ三个方向的位置精度分别提高了55.8%,46.6%和39.7%。

  • 标签: Cubature卡尔曼滤波 多重渐消滤波 鲁棒滤波 奇异值分解 组合导航
  • 简介:本文依据卡尔滤波器在使用最佳增益时,其余差序列互不相关的性质,开发了一种新的渐消滤波算法。该算法根据对象输出,在线自适应地调整遗忘因子,从而使滤波器在对象模型存在误差或对象受到外扰时,仍收敛并保持最佳性。该算法应用于陀螺随机常值漂移的标定,取得较好效果

  • 标签: 卡尔曼滤波 自适应滤波 捷联惯性系统 陀螺漂移