简介:为研究转捩与湍流对激波边界层干扰及底部流动结构的影响,文章选取了二维与三维高超声速双斜面进气道模型与大钝头着陆器模型,并使用γ-Reθ转捩模型开展数值模拟研究.研究表明,对于二维进气道模型,随着前缘钝度的增加,激波边界层干扰位置前移,分离区变大,与层流流动情况相比,有转捩流动发生时,激波边界层干扰位置后移,同时分离流动强度变弱,分离区缩小;对于三维进气道模型,其拐角附近的分离流动呈现明显的三维特征,转捩流动也存在三维流动结构,与静风洞状态相比,噪音风洞状态下,有转捩流动发生,对壁面热流影响较大,对激波系影响很小.对于着陆器模型,底部流动发生转捩,使得底部流动由不稳定非定常的流动结构变为稳定定常的流动结构,这有益于姿态控制设计.
简介:证明非光滑区域上的散度型二阶椭圆方程ai(αij(X)aju(X))=0的弱解的Fatou逆定理及Dirchlet问题的惟一性.
简介:许多常微分方程教材关于解的整体连续依赖性的讨论都用到了一个“紧性”事实:欧氏空间中的紧集上一个局部Lipschitz函数一定在该紧集上是全局Lipschitz的.然而这一事实在教学中并非显然,不少学生在试图给出证明时都走入了一个误区.本文对这一问题从正反两方面进行了讨论.