简介:基于Lyapunov-Schmidt方法求出给定方程的分岐方程,Newton迭代得到其在分岐点附近的近似非平凡解枝,得到了满意的结果.
简介:本文研究kolmogorov捕食系统{(dx/dt)=x(ψ(x)-φ(y)(dx/dt)=y(bx^m-d)得到了极限环存在唯一的条件,从而推广了前人相关的结果.其中:ψ(x)=a0+a1x+a2x^2+…+a(a-1)x^(n-1)-anx^n;n≥m≥1(n,m∈N),φ(0)=0,φ(y)〉ε〉0(y〉0).
简介:一、判断题(每小题1分,共8分)1.a的平方与8的差的7倍写成7a2-8.( )2.(a2+b2)+ab叙述为:a、b两数和的平方与a、b两数积的和.( )3.-13的相反数的倒数是3.( )4.如果a是一个有理数,那么-a一定是个负数.( )5.在数轴上与原点的距离越远的点表示的数不一定越大.( )6.近似数3.8万是精确到千位的数.( )7.在有理数范围内a2≥1a2一定成立.( )8.两个相反数的和除以它们的积,所得的商等于零.( )二、填空题(每小题2分,共20分)1.12(a+5)用语言叙述为:.2.非负数集合中,最小的数是,最大的数是.3.数轴上A点表示-3,则距A点5个单位长度的
简介:研究一类特征值问题及其应用.首先应用常微分方程理论讨论一类边值问题非平凡解的存在唯一性,并将该研究结果应用到一类弹性系统的镇定问题.得到了系统渐近稳定的充分条件.