简介:在自反Banach空间中运用对偶映射方法给出闭稠定满射线性算子的集值度量右逆的表示.拓广了已有的相应结果.
简介:在一致凸Banach空间上,研究了半紧的非扩张压缩映象||Tx-Ty||≤||x-y||的Ishikawa型的三重迭代序列的收敛性问题,建立并证明了带误差的Ishikawa三重迭代逼近收敛定理,从而独特的推广了Mann和Ishikawa迭代方法,改进和发展了文献[1]-[7]的主要结果.
简介:生产系统随着设备磨损往往会失控或发生故障,给企业带来巨大损失.本文以备货型生产系统为研究对象,根据其成品先入库后销售的特点,建立基于故障率的非周期的生产、维修、库存整合模型.模型以最小化单位总成本为目标,基于萤火虫算法的邻域结构改进粒子群算法,求解系统的最优生产率和维修策略,并分析比较不合格产品率、失控率对目标函数值和最优策略的影响.
简介:平面向量的综合性问题,如果作为解答题,往往放在解答题的第一题,难度不大.但如果作为填空题,尤其是在11题以后的填空题出现,那要求就会提高,要想迅速准确地解答这类问题并非易事.笔者研究这类问题时发现平面向量部分难度较大的填空题以及三角形外接圆相关的问题不在少数,那么,这些问题都有哪些解法,解法之间又有什么共通点,而通过分析这类问题又能得到哪些有利于一般平面向量问题解决的好方法呢?下面就这些问题作探讨.
简介:众所周知,高等工科学校的培养目标与理科院校是不同的。既然如此,它们的微积分教材应有什么区别呢?工科微积分教学应具备什么有别于理科微积分教学的特点呢?这是近年来不少数学教育工作者,特别是工科数学教育工作者所关注的问题。笔者认为,H.P.
简介:通过使用Hammastein积分方程和锥上的不动点定理对于一类含时间奇异性的二阶非线性Dirich.1et问题建立了三个局部存在定理.主要结论表明只要非线性项的主要部分在某些有界集合上的高度是适当的此问题具有n个正解,其中竹是一个任意的自然数.
简介:就文献《偏序集上的一种拓扑排序》一义提出了几点看法,探讨了文献中给出的祖先数算法、支配排序算法中的问题,并就其中的dominate函数、函数的时间复杂度的计算以及文献中给出的定理2的正确性进行了分析和论证,并指出了文献中所举例子中存在的差错.最后,对拓扑序列的合理性做了简单的讨论.
简介:利用元胞自动机方法建立植物病虫害传播的数学模型。在此基础上,分别对两种不同病虫害来源的情况进行仿真。仿真结果表明,在参数给定的情况下,无论病虫来源于自身还是外界,植物病虫害的传播均在一定时间后达到稳定状态,不同状态元胞占有率相近;相同参数下,同病虫来源于自身相比,植物病虫从外界入侵时,植物被感染的变化率较低,病虫害传播路径较有规律,有利于病虫害源的确定和病虫害的治理。
简介:要设(Mn,go)(n奇数)是紧Riemannian流形,λ(go)〉0,这里λ(go)是算子-4△go+R(go)的第一特征值,R(go)是(Mn,go)的数量曲率.设以(Mn,go)为初值的规范化的Ricci流的极大解g(t)满足|R(g(t))|≤C和λ(对某个常数C一致成立).我们证明这个解有子列收敛于一个Ricci收缩孤立子.进一步,当n=3时,条件fM|Rm(g(t))+n/2dμt≤C可去.
简介:给出了置换因子循环矩阵A=PercircP(F_0^(k,h),F_1^(k,h),***,F_n-1^(k,h)和B=PercircP(L_0^(k,h),L_1^(k,h),***,L_n-1^(k,h)的谱范数的上界与下界,得到了矩阵A与B的Kronecker积与Hadamard积的谱范数的一些界.
简介:本文给出了函数项级数是否一致收敛的几个新的判别法,并给出了几个应用定理的例子.
简介:研究了方程-div(‖Du‖^-2Du)=λf(u)在R^n,n≥2中环域上的正的径向解的多重性。当f在正区域上有多个峰的情况下,我们获得了多个解。
简介:研究了具有扭转耦合效应的复合薄壁梁黎斯基的性质以及指数稳定性.首先证明该系统决定算子的预解式是紧的,且可生成群.其次,通过对该系统算子谱的渐近分析,证明了除至多有限个本征值外,其算子的谱是单重可分离的.特殊地,我们获得了自由系统的频率渐近表达式,因而利用克尔德什定理,证明了在希尔伯特状态空间中算子广义本征函数列的完备性.最后,结合黎斯基的性质及算子谱的分布证明了该系统的指数稳定性.
简介:主要利用算子的性质证明了一类带扰动项的拟线性方程的L2(Ω)初值和狄立克莱边值问题解的存在性和唯一性.
简介:结合自己的工作,对Gowers-Maurey系列成果获Fields奖以来的研究的新动态作一综述。本文是上篇,主要讨论含遗传不可分解空间在内的G-M型空间的若干品种。
简介:在控制理论和控制工程中,镇定控制器的设计是一个经典问题。许多有关这个问题的结论一般都是针对线性系统。对于非线性系统,很少见到有构造性结果能用于控制工程中。本文针对一类广泛的非线性控制系统,我们构造了一些控制器,这些判据在工程实际问题中将具有一定的指导意义。
简介:在高中数学学习过程中,我们平常解决的代数问题大多是单变量问题,代数中的多变量问题往往令学生望而却步,因为一些多变量问题用代数方法解决很复杂,以至于找不到解决问题的突破口.高考中往往也用此类问题来压轴,提高试卷的区分度.本文仅从几何化角度来谈谈此类问题的解决方案.
简介:在L^p(1〈P〈∞)空间上研究板几何中一类具反射边界条件下各向异性、连续能量、均匀介质的奇异迁移方程.证明其奇异迁移算子产生C0半群和该半群的Dyson-Phillips展开式的二阶余项是紧的,且得到了该算子的谱在区域Г中由具有限代数重数的离散本征值组成等结果.
简介:引入k-次增生算子的概念,主要研究了k-次增生算子的带误差的1shikawa迭代序列的收敛性问题.改进和推广了Chidume的相关结果.
简介:在Hilbert空间中讨论一类广义集值非线性混合变分包含问题近似解的存在性,建立变分包含与广义预解方程的等价性,形成了迭代算法并研究了算法的收敛性.
Banach空间中线性算子的集值度量右逆的表示及应用
一致凸Banach空间非扩张映象带误差的Ishikawa型的三重迭代序列的收敛性
基于改进粒子群算法的备货型生产系统的生产与维修整合模型
与三角形外接圆相关的向量问题引发的思考
工科微积分教材的特点——Greenspan和Benney合著《微积分》一书的特色
一类含时间奇异性的二阶非线性Dirichlet问题的正解
关于《偏序集上的一种拓扑排序》一文的几点意见
基于元胞自动机的植物病虫害传播的计算机仿真
关于奇数维流形上规范化的Ricci流的一个注记
关于(k,h)-Fibonacci和(k,h)-Lucas数的置换因子循环矩阵的谱范数
函数项级数一致收敛性的几个新的判别法
环域上一类拟线性椭圆方程正的径向解的多重性
具有扭转耦合效应的复合薄壁梁黎斯基的性质和指数稳定性
一类带扰动项的拟线性抛物型方程解的存在性
关于G—M成果研究的若干新动态I—G—M型空间的若干品种
一类具有分离变量的非线性离散系统的镇定控制器
多变量代数问题的几何化思想——课堂教学中数学思想渗透的思考
板几何中一类具反射边界条件的奇异迁移算子的谱
含k-次增生算子具误差的Ishikawa迭代的收敛性问题
集值非线性混合变分包含问题的一类新的迭代算法