简介:本文通过构造Lyapunov函数和利用不等式分析技巧,研究了具有时滞的细胞神经网络的稳定性,给出了与时滞无关的网络渐近稳定的充分判据,该判据可用于时滞细胞神经网络的设计与检验,有重要的理论意义与应用价值。
简介:研制了二维多介质流体程序,主要包括单介质内高精度流体力学计算,多介质混合网格内各种介质输运过程和压力驰豫平衡过程计算、实际状态方程的黎曼解计算。流体计算分别采用高分辨两步PPM(ParabolicPiecewiseMethod)算法、TVD(TotalVariationDiminishing)算法和FCT(FluxCorrected—Transport)算法,流体界面追踪采用VOF(Volume-of-Fluid)。数值求解可压缩多流体方程组和可压缩VOF方程。二维界面追踪分别采用一阶精度Youngs方法和二阶精度Elivira方法,三维界面追踪采用一阶精度Youngs方法,
简介:考虑由磁流体力学方程组控制的二维不可压缩流体的初边值问题,在边界光滑的有界区域中,当(u0,B0)∈((Wm,p(Ω))2×Wm,p(Ω))时,利用Galerkin方法和先验估计,得到了相应的初边值问题存在唯一的弱解(u(.,t),B(.,t))∈((Wm,,(Ω))×Wm,p(Ω)),并证明了弱解对初值(U0,B0)具有连续依赖性.
简介:研究具有反馈控制的单种群对数模型.通过构造适当的Lyapunov函数.我们让得系统的正平衡点是无条件全局稳定的.所得结果补充和完善了已有的结果.
简介:研究从幂结合广群到实的或复的赋准范空间的Cauchy算子方程的Hyers-Ulam-Rassias稳定性.
简介:本文给出了Benjamin-Ono方程的孤立波解,并应用M.Grillakis[4,5]等的抽象理论,通过谱分析,证明了该孤立波解是轨道稳定的。