简介:高温固相反应方法合成了Li1-xNaxMn2O4锂离子电池正极材料。通过Na部分取代锰酸锂中的Li,期待能够弱化Jahn-Teller效应,提高锰酸锂的循环稳定性。实验结果证实了我们的预测。取代量为x=0.06时最佳。
简介:将有序多孔阳极氧化铝(PAA)模板修饰到涂有饱和Dawson型K6[As2W18O62]·14H2O(As2W18)杂多酸的溶胶(Sol)玻碳电极(GCE)上,制备了新型的PAA/As2W18-Sol/GC修饰电极.采用SEM、XRD和循环伏安等测试技术对多孔PAA形貌、结构和修饰电极性能进行表征,考察了PAA对修饰电极电化学性质的影响,并用循环伏安法(CV)和电流-时间(i-t)曲线法探讨了修饰电极电化学行为.研究结果表明,有序多孔PAA模板不仅改善了As2W18-Sol/GCE的可逆性,使峰形变得更加尖锐,而且还提高了修饰电极的稳定性和灵敏度;该纳米多孔材料修饰电极对邻苯二酚有明显的催化还原作用,在1.0×10-6~0.01mol/L浓度范围内邻苯二酚浓度与催化电流呈线性关系,检测限达到1.0×10-8mol/L,可用于实际样品测定.
简介:以丙烯酰二茂铁基乙酯(AFcEE)及丙烯酰胺(AM)为单体,通过溶液聚合法制备丙烯酰二茂铁基乙酯和丙烯酰胺共聚物(P(AFcEE-co-AM)),并采用滴涂法制得P(AFcEE-co-AM)修饰电极,并采用循环伏安法测试P(AFcEE-co-AM)修饰电极的电化学性能.红外光谱测试表明,在1500~2000cm-1区间内,只在1671cm^-1处出现C=O单峰,可见成功制得(P(AFcEE-co-AM))聚合物.循环伏安法测试结果表明,P(AFcEE-co-AM)修饰电极的电化学反应属于受扩散控制的准可逆氧化还原反应.P(AFcEE-co-AM)修饰电极的稳定性受AFcEE用量影响,当w(AFcEE)〈50%时,P(AFcEE-co-AM)修饰电极具有良好的稳定性.
简介:采用改进的固相碳热还原法通过两步包碳法制备了双层碳包覆的LiFePO4正极材料。用SEM、XRD等对其进行表征,并将其组装成纽扣式电池,测试了其电化学性能。结果表明通过对前躯体磷酸铁的碳包覆能有效控制产品双层碳包覆磷酸铁锂的颗粒大小,双层碳包覆不改变磷酸铁锂的晶体结构,0.1C首次放电比容量为150.0mAh/g,循环50次后比容量仅减少了3.9%。表明所制备的LiFePO4样品具有较好的电化学性能。
简介:以LiMn1.5Ni0.5O4作为锂离子电池的正极材料,用电化学手段考察了其电池的电化学性能与电解液组成的关系,研究发现混合电解液的放电容量的顺序为EC+DEC(1:1)〉EC+DMC(1:1)〉EC+DEC(3:2)〉EC+DEC(2:3)〉EC+PC(1:1),从而为LiMn1.5Ni0.5O4作为锂离子电池的正极材料选择了较理想的混合电解液。
简介:在氧气气氛下,以乙酸盐为原料,以柠檬酸为螯合剂,用溶胶凝胶法制备出了锂离子电池正极材料LiNi0.8Co0.2O2:。研究了不同合成温度和Li/(Ni+Co)配比对材料的结构和电化学性能的影响。XRD检测结果表明:合成温度为750%、合成时间为18h、Li/(Ni+Co):1.10的正极材料LiNi0.8Co0.2O2具有完整的晶型结构;充放电性能测试结果表明,该材料在0.5C下,首次充放电容量分别为230.0mAh/g和192.6mAh/g,首次充放电效率为83.73%,经过50次循环仍有170.5mAh/g,容量保持率为90.87%。
简介:采用简单水热法和后续高温煅烧制备多孔结构V2O5微球,用X射线衍射仪分析V2O5微球的晶体结构,通过扫描电镜和透射电镜观察和分析微球表面形貌与微观结构。结果表明,微球为单相V2O5,呈形貌均一的多孔结构。作为锂离子电池正极材料,V2O5多孔微球电极在不同电压区间均显示出优异的电化学性能,在2.5~4.0V电压范围内,100mA/g的电流密度下,初始放电比容量达到145(mA·h)/g,接近理论值147(mA·h)/g,循环50圈后仍保持在138(mA·h)/g,容量保持率高达95.2%。此外,该电极还表现出优异的长循环稳定性,在2A/g的电流密度下循环1000圈后放电比容量保持在82.8(mA·h)/g,平均单圈比容量衰减率仅为0.022%。该材料优良的电化学性能得益于三维多孔微球结构。