简介:利用上下解方法及Schauder不动点定理,证明了二阶非线性微分方程组三点边值问题:{y"=f(t,y,z,y',z')z"=g(t,y,z,y',z')y(-1)=A,y(1)=B,z(0)=C0,z'(0)=C1,解的存在性,并由此得到四阶非线性微分方程三点边值问题解的存在性,一定程度上推广了前人的一些结果.作为文章结果的应用,讨论了奇摄动四阶半线性三点边值问题,得到该问题解的存在性及解的渐近估计.
简介:在允许非线性项变号的情况下,利用锥上不动点定理,讨论了一类二阶非线性微分方程组的非齐次Sturm-Liouville边值问题解的存在性,得到了至少一个解及正解存在的多个存在性定理.
简介:利用非线性增生映射值域的扰动定理,研究了非线性椭圆边值问题(1)在Ls(Ω)空间中解的存在性,其中max(N,2)≤p≤s<+∞.(1){-div{(C(x)+|▽u|2)p-2/2▽u}+|u|p-2u+g(x,u(x))=fa.e.x∈Ω-〈n,(C(x)+|▽u|2)p-2/2▽u〉∈βx(u(x))a.e.x∈Γ这里f∈Ls(Ω)给定,Ω()RN为有界锥形区域,n为Γ的外法向导数,g:Ω×R→R满足Caratheodory条件且对()x∈Γ,βx是正常、凸、下半连续函数ψx=ψ(x,·)的次微分,其中ψ:Γ×R→R.本文是对笔者以往一些工作的继续和补充.
简介:对太空轨道碎片清理的商业运营模式和是否存在商机问题建模进行研究。首先,提出了太空轨道碎片清理公司的商业运营模式,即以清理公司、保险公司和卫星公司为主体的三位一体的系统运营模式;其次,给出私营清理公司商机的定义,通过对运营系统资金费用的分析,定量建立系统正常运营的保险公司最低保单价格和卫星公司最高保险价格求解的模型,并分析了模型的可计算性,给出了商机存在的条件以及商机大小的计算方法;最后,借助于清除效率,建立3种不同轨道碎片清除模式下清除成本的模型,给出了计算不同清除方式下保险公司最低保单价格和卫星公司最高保险价格的模型,验证了定义的商机是合理的并可计算的。
简介:讨论了一类广义Liénard型系统(x)=p(y)k(x),(y)=-f(x,y)p(y)q(y)-g(x)h(y)非零周期解的存在性和不存在性,给出了非零周期解的存在和不存在的一类充分条件.
简介:证明了几个重要不等式,并研究了几类不同边界条件下随机半闭1-集压缩算子方程随机解的存在情况,得到了若干新的结果.
简介:利用锥上的Krasnoselskii不动点定理,证明了二阶非线性具特征值问题的脉冲微分方程正解的存在性.