简介:摘要:本次课题的目的,是对现在主流的图像去雨算法进行一个对比,并通过对比,通过具体的案例,来分析出不同的算法间的优略。在本次课题中,主要对两个算法进行,分别是基于滤波去雨算法和暗通道先验算法去雨。对于基于滤波去雨算法和暗通道先验算法去雨的优略而言,基于滤波去雨算法更加适合雨水相较不那么密集的图像,面对雨水密集的图像时,它处理的结果一般。但它算法简单,易于实现;对于暗通道先验算法去雨而言,它对于雨水是否密集无太大的要求,都能有较好的效果,缺点在于运算量较大,且需要构建不少函数来支撑算法的实现,最后的结果如果不进行图像融合,呈现出灰色的图像。对于它们二者的结果,用MATLAB进行了复现。
简介:介绍了层析成像技术的图像重建算法,并从正向问题数学模型的简化和反向问题数学模型的映射结构的角度比较了各种算法的特点和优劣。研究表明:用本质是线性算法的各种变换方法重建图像存在严重失真,而卷积滤波的引入可以使变换方法的重建效果有所改善;基于导数搜索的迭代算法对初始值依赖性强、收敛速度慢并且容易陷入局部最优解;基于Fourier变换的方法具有本质的局限性;小波变换则可以同时刻画图像时域和频域的细节特征;有限元法通过重建对象像素的智能划分可以简化正问题的复杂性;而具有物理背景的蒙特卡罗法、模拟退火法、遗传算法、粒子滤波法及神经网络法更适合于复杂且非线性的图像重建;智能化、仿生化、并行化以及各种算法的融合是层析成像图像重建算法的发展趋势。