简介:摘要目的研究直线加速器机架旋转加速度设置,对多病种容积旋转调强(VMAT)计划剂量学、机器效率和计划验证结果的影响,探讨机器模型中机架加速度约束条件的优化选择。方法分别选取10例鼻咽癌、非小细胞肺癌、乙状结肠腺癌腹膜后淋巴结转移和乳腺浸润性导管癌病例,在Pinnacle v9.10计划系统中建立允许机架旋转加速度变化和限制机架旋转加速度变化的两种机器模型,采用相同射野布置、优化目标参数和优化权重设计VMAT计划,分析各病种不同机架旋转加速度设置下靶区和危及器官剂量学变化,比较治疗时间和计划验证γ通过率的差异。结果入组病例采用允许机架旋转加速度变化的机器模型:治疗时间显著低于机架匀速运动组(t=-6.751、-0.209、-19.523、-28.999,P<0.05),分别降低了15.27%、18.07%、19.71%和28.75%,同时影响靶区适形性和均匀性,但计划验证γ通过率均无统计学意义(P>0.05);对于鼻咽癌病例,脑干计划危及器官(PRV)最大剂量增加1.25%;对于肺癌病例,脊髓最大剂量和全肺V20增加了1.19%和1.21%,全肺V5降低了1.21%;对于腹膜后淋巴结放疗病例,双侧肾脏、肝脏、小肠和结肠平均剂量均有增加;对于乳腺癌病例,患侧肺V10增加了1.66%,健侧肺平均剂量降低了7.45%。结论允许机架加速度变化模型设置可显著缩短计划治疗时间,提高治疗效率。虽一定程度上降低靶区适形性和均匀性,增加部分危及器官剂量,但仍符合临床剂量学要求。在Pinnacle v9.10机器模型机架加速度约束设置中,推荐使用允许机架变速运动设置。
简介:摘要加速度是运动学和动力学的核心概念,是联系这两部分内容的桥梁,中专初学者必须弄懂、学透。本文深入分析了如何理解加速度这一概念,探讨了教师如何教、学生如何学的问题。
简介:由于MEMS陀螺精度低、漂移大,使得MEMS陀螺和加速度计构成的微惯性导航系统(Micro-INS)的精度很低,导航定位误差发散很快,不能满足载体进行导航定位定姿的要求。而相对MEMS陀螺,MEMS加速度计精度较高,据此提出用MEMS加速度计来构成的无陀螺微惯性导航系统(GyroFreeMicroInertialNavigationSystem,GFMINS),即通过将高精度的MEMS加速度计安放在载体非质心处,代替陀螺来测量载体角运动信息,实现在短时间内的载体角速度测量精度优于MEMS陀螺的精度,以满足某些短时间运行载体的导航定位定姿要求。最后,针对某型火箭弹的运动模型,对两种惯导系统进行了仿真,结果表明,由误差补偿后MEMS加速度计构成的无陀螺微惯导系统,在100s内的导航误差等效于传统惯导系统中陀螺漂移0.1(°)/h的误差。
简介:摘要:随着智能配电网的发展速度越来越快,环网柜作为城市配电网中重要的开关设备,所占的地位越来越重,但是目前环网柜整体水平并不高。一些环网柜只是初步实现了馈线自动化功能,还不具备在线监测功能。大多数环网柜还不具备自动化功能,对于环网柜融入到智能配电网造成巨大阻碍,关于智能环网柜方案的研究已成迫切需求。基于角位加速度的分合闸特性监视方法研究,具有实际意义。
简介:本文采用有限元软件Abaqus,采用轴对称模型分析了钢质小球在相同速度下(1m/s)撞击不同弹性模量的圆柱体发现,钢球的回弹加速度随圆柱体的弹性模量的增加而增加,而回弹完毕后的最终速度一样.采用不同速度的钢球撞击同一弹性模量的圆柱体,则得出钢球的回弹加速度随钢球的速度的增大而增大.当钢球的速度一定时,钢球撞击圆柱体的回弹加速度与圆柱体的加速度相关.如果测出钢球撞击弹性体的加速度,则可以推出弹性体的弹性模量.对于混凝土类材料来说,弹性模量随混凝土的抗压强度的增加而增加,可以由测出的弹性模量来反推混凝土的抗压强度,从而实现基于回弹加速度的混凝土抗压强度无损检测.
简介:为了便于获取步态数据,采用μPD78F0547微控制器、LIS3LV02DQ微加速度计、nRF2401无线收发芯片等主要器件,设计了步态加速度信号无线采集装置。将该装置的一端固定于人体腰或腿等部位,按设定的采样率连续输出运动时的三维加速度数据;另一端接收数据并通过串行接口实时地传送到计算机中,从而实现大量步态数据的采集和存储。