简介:研究了拓扑等价的多个时空混沌系统组成的星形网络,提出了一种主动滑模控制时滞时空混沌星形网络的函数投影同步控制方法,实现了多个时空混沌系统的同步.在结合主动控制和滑模控制方法的基础上,设计了主动滑模控制器的结构,得到了网络函数投影同步的必要条件.以Gray--Scott时空系统作为网络节点构成的星形网络为例进行了仿真模拟.结果验证了主动滑模控制器的有效性.
简介:研究了粘弹性夹层圆板的自由振动特性.基于经典弹性薄板理论和Kelvin-Voigt粘弹性本构方程,建立了粘弹性夹层圆板振动控制方程.采用分离变量法导出了粘弹性夹层圆板的自然频率及振型解析表达式,计算了固支和简支粘弹性夹层圆板的自然频率,并与有限元计算结果进行比较;讨论了粘弹性夹层圆板的夹心层比率对自然频率及衰减系数的影响.研究表明:(1)随着夹心层厚度的增大,系统频率先增大后减小,高阶时该趋势表现更为明显;(2)随着夹心层厚度的增大,衰减系数一直增大,高阶时该趋势表现更为明显.
简介:对旋转粘弹性夹层梁的非线性自由振动特性进行了分析.基于Kelvin—Voigt粘弹性本构关系和大挠度理论,建立了旋转粘弹性夹层梁的非线性自由振动方程,并使用Galerkin法将偏微分形式振动方程化为常微分振动方程.采用多重尺度法对非线性常微分振动方程进行求解,通过小参数同次幂系数相等获得微分方程组,并通过求解方程组及消除久期项来获得旋转粘弹性夹层梁非线性自由振动的一次近似解.用数值方法讨论了粘弹性夹层厚度、转速和轮毂半径对梁固有频率的影响.结果表明:固有频率随转速增大而增大,随夹层厚度增大而减小,随轮毂半径的增大而增大.
简介:采用Hodgkin-Huxley神经元模型,在二维随机神经网络中引入局部扩散功能缺陷,研究了神经网络中非对称缺陷附近的方形失去扩散功能的缺陷对螺旋波动力学行为的影响.缺陷使螺旋波降低传播速度的行为与缺陷的位置和尺寸有关:靠近螺旋波中心的缺陷影响最为显著,当缺陷远离中心位置时,缺陷的作用明显减弱;缺陷尺寸越大,影响也越显著.同时观察到,在弱耦合神经网络中,缺陷的存在导致了螺旋波的漂移现象.进一步研究缺陷和通道噪声同时存在时系统时空斑图的演化行为,结果发现,噪声作用下缺陷处形成了新的波源.最后,通过分析神经元放电节律和平均膜电位的变化揭示了缺陷对神经网络时空行为影响的机理.
简介:基于改进的KBM法,研究了强非线性多自由度自治系统的内共振.求出了极限环的振幅和近似解的表达式.与KBM法比较,该方法的特点是:近似解中包含项中的不再是时间的线性函数,而是时间的非线性函数,它能提高近似解的精度,且应用更广,最后给出一个具体实例,得到了近似解以及相图.和数值结果比较,本文方法具有较高的精度.
简介:为研究斜拉桥中索与梁、索与索之间的耦合振动问题,建立了斜拉桥的单梁-多索力学模型.考虑索的初始垂度引起的几何非线性因素的影响,将多索梁模型分段处理,基于索、梁经典的面内振动的微分方程,通过索、梁连接处的动态平衡条件,建立多索梁模型面内振动理论.以双索梁为例,应用分离变量法,结合边界条件,求解双索斜拉梁模型平面内自由振动的特征值问题.同时,建立双索梁的有限元模型,有限元所得结果与本文理论研究吻合良好.最后对CFRP索梁模型的各项相关重要参数进行分析,并将本文理论与课题组前期成果进行对比分析.研究表明,CFRP索能极大改善双索梁模型的基本动力学性能.增大拉索轴向刚度能明显提高模型的低阶频率,而梁弯曲刚度的提高对其高阶频率的提高比较明显.
简介:本文以一类单自由度双边非对称碰撞振动系统为研究对象,采用广义Hertz接触模型表示碰撞过程,考察系统在宽带随机激励下的稳态响应.应用基于广义谐和函数的随机平均法推导出系统在宽带随机外激励下的伊藤随机微分方程,通过求解相应的稳态FPK方程,得到系统关于幅值、能量和位移的稳态概率密度以及位移与速度的联合稳态概率密度.另外,将系统的随机响应近似为马尔可夫过程,利用广义胞映射法得到系统的近似稳态响应.最后通过与蒙特卡罗模拟结果的对比,验证了随机平均法和广义胞映射法的有效性.
简介:基于Poincaré映射方法对一类两自由度碰撞系统进行研究.经过详细的理论演算得到单碰周期1/n的亚谐周期运动的存在性判据,并能精确地找到亚谐周期运动的初始位置.表明碰振系统的周期运动研究可以通过解析与数值方法的结合去实现.数值模拟表明了亚谐周期运动的存在性判据的正确性,并通过计算Jacobi矩阵的特征值可判断周期运动的稳定性及分岔.
简介:研究了因与外部接触而发生局部非线性的动力学系统.基于NOFRF理论,对系统中出现的各次谐波分量进行研究,推导出了该类系统各自由度各阶谐波分量的表达式.证明了该类动力学系统中各自由度之间高次谐波分量的与原线性系统动柔度矩阵的相关元素成正比关系,并据此提出了一种简洁的局部非线性位置的辨识方法.采用这种方法,可以通过结构体中任意两个部位之间的高次谐波分量的比值关系,经过一次谐波激励而辨识出非线性的具体位置.对一个多自由度系统进行数值仿真,验证了该方法的有效性.