简介:摘要利用传统的单端电压、电流电气量进行故障测距时,容易受到过渡电阻的影响而导致测量距离不精确。本文以小波变换为基础,将传统的单端电气量与反向传播(BP)神经网络算法相结合,提出了一种用于故障测距的新方法,通过大量的仿真验证表明,该方法能够适应各种环境的要求,且精度高,具有一定的实用价值。
简介:BP神经网络分类器在信号识别领域得到了比较广泛的应用,针对其低信噪比环境下识别率相对较低的问题,引入人工蜂群算法(ABC),将求解BP神经网络各层权值、阂值的过程向蜜蜂寻找最优蜜源的过程转变,最后阐述了一种以人工蜂群算法为基础的神经网络分类器设计方法(ABCBP算法),并以2ASK,2FSK,2DPSK信号为例,对信号进行小波包分解后,将信号各频段的能量值数据作为实验样本,对其进行了信号分类。仿真结果表明:基于人工蜂群算法的优化BP神经网络分类器,即使在5dB的信噪比环境下,仍可达到94%以上的识别率,并具有较好的稳定性,这为信号识别领域中分类器的设计提供了一个很好的理论依据。
简介:文章研究了利用非破坏性参量预测发电机主绝缘的剩余击穿电压,大型发电机主绝缘的非破环性参量主要有直流特征参量、交流特征参量、介质特征参量、局部放电特征参量和非电特征参量这五类。通过分析得到了介质特征量与局部放电特征量这两类参量适合预测剩余击穿电压的结论。紧接着用皮尔森积矩法作了这两类参量与剩余击穿电压的相关性分析,最终获得了四个与剩余击穿电压有较大相关性的非破坏性参量。本文筛选的网络模型经训练后取得了良好的预测效果:预测值与实际值的最大相对误差为0.93%,最小相对误差仅为0.01%。由此证明通过BP神经网络预测大型发电机主绝缘剩余击穿电压是可行的。
简介:摘要电网电力系统的安全稳定并且实现可实现经济运营,与其对负荷的准确预测具有较为重要的关系,基于多分辨分析思想为基础的小波分析结合BP神经网络构建模型,对电网短期符合进行预测。首先,采用正交小波变换的塔式结构快速算法对电网负荷数据序列实现小波分解过程,剔除负荷中的非有价值历史数据,获得真实规律性电力负荷数据;然后,通过小波分解后,根据分解后的各层分量选取阈值,获得符合其特点的分量数据后输入神经网络,经过小波算法的重构过程得到预测日期的负荷数据。仿真结果显示,运用文中构建的改进BP神经网络模型预测较人工网络预测精度具有明显优势,该预测方法能够更好地对电网进行有效的负荷预测。
简介:针对传统被动式孤岛检测法存在检测时间长、盲区(NDZ)大,而主动式孤岛检测法影响电能质量的缺点,提出一种新的基于小波包对数能量熵(WPLEE)与BP神经网络的孤岛检测方法。该方法首先采集公共耦合点(PCC)处的电压信号,再将该电压信号分别进行小波包变换,然后通过对数能量熵进行算法处理来获取适合于孤岛检测的特征向量,该特征向量通过BP神经网络进行模式识别来判断系统是否发生孤岛现象,特别在逆变器输出功率和本地负载功率匹配时。实验和仿真结果表明,该方法均能准确、有效地判断出是否存在孤岛状态,同时与传统的被动式孤岛检测方法相比检测速度快,检测盲区小,不会对电能质量产生不良影响。
简介:摘要电网电力系统的安全稳定并且实现可实现经济运营,与其对负荷的准确预测具有较为重要的关系,基于多分辨分析思想为基础的小波分析结合BP神经网络构建模型,对电网短期符合进行预测。首先,采用正交小波变换的塔式结构快速算法对电网负荷数据序列实现小波分解过程,剔除负荷中的非有价值历史数据,获得真实规律性电力负荷数据;然后,通过小波分解后,根据分解后的各层分量选取阈值,获得符合其特点的分量数据后输入神经网络,经过小波算法的重构过程得到预测日期的负荷数据。仿真结果显示,运用文中构建的改进BP神经网络模型预测较人工网络预测精度具有明显优势,该预测方法能够更好地对电网进行有效的负荷预测。
简介:摘要当前,我国能源紧缺问题越来越严重,在这样的情况下,社会各个领域越来越着重关注可再生能源的开发和利用,以此来有效缓解全球范围内的能源危机,在这样的背景下,可再生能源的地位也得到显著的提升,特别是太阳能被社会各界广泛关注,太阳能光伏发电技术也有了不断的发展和优化,应用范围越来越广,人们的接受度和认可度也越来越高。因为光伏发电系统故障诊断对于发电系统的正常运行有着关键性的影响,要想对其进行科学合理的维护和监测需要付出极大的人力、物力和财力,特别是人工资源,所以寻找到更有效的监测和维护网络是至关重要的。结合这样的情况,本文有针对性的分析和探究BP神经网络在光伏发电系统故障诊断中的应用,希望通过本文的分析能够为相关从业者提供某种程度上的参考。
简介:摘要电网电力系统的安全稳定并且实现可实现经济运营,与其对负荷的准确预测具有较为重要的关系,基于多分辨分析思想为基础的小波分析结合BP神经网络构建模型,对电网短期符合进行预测。首先,采用正交小波变换的塔式结构快速算法对电网负荷数据序列实现小波分解过程,剔除负荷中的非有价值历史数据,获得真实规律性电力负荷数据;然后,通过小波分解后,根据分解后的各层分量选取阈值,获得符合其特点的分量数据后输入神经网络,经过小波算法的重构过程得到预测日期的负荷数据。仿真结果显示,运用文中构建的改进BP神经网络模型预测较人工网络预测精度具有明显优势,该预测方法能够更好地对电网进行有效的负荷预测。