学科分类
/ 9
166 个结果
  • 简介:设X是一个实Banach空间,X*为其对偶空间,G是X的开、有界子集.T:D(T)(属于)X→2^x是m-增生算子,C:D(T)→X是有界算子.分别在C(T+I)-1非扩张与C(λT+I)-1紧的情况下,利用凝聚映射的度理论,考虑了方程0∈-R(T+C)的可解性问题.定理4中在边界条件只为(I-(T+C))(D(T)∩(э)G)(∪)(^-G)的情况下用L-S度理论考虑了方程0∈-(T+C)(D(T)∩G)的可解性问题.这些定理推广了一些已有结果.

  • 标签: M-增生算子 凝聚映射 严格集压缩映射 凝聚映射同伦
  • 简介:利用范数假设条件给出了带扰动的m一增生算子的一些映射定理.其结果是:B+D  R(T+C)并且int(B+D) R(T+C)的类型.其中B、D是实Banach空间X的子集,算子T:X D(T)→2~X至少是m一增生的,扰动算子C:X D(C)→X至少是紧、demi一半连续或完全连续的.这些结果推广和改进了已有文献的有关结果.

  • 标签: M-增生算子 完全连续映射 demi-半连续映射 凝聚映射 一致凸空间
  • 简介:设E是任意实Banach空间,T:E→E是Lipschitz的强增生算子.证明了,带误差的Ishikawa迭代序列强收敛到方程Tx=f的唯一解.特别地,还给出了Ishikawa迭代序列的收敛率估计.另一方面,一个相关结果,讨论了E中lipschitz强伪压缩映象的不动点的带误差的Ishikawa迭代序列的收敛性.

  • 标签: 实BANACH空间 Lipschitz强增生算子 Ishikawa逼近
  • 简介:首先介绍了Banach空间中的一类含H-增生算子的广义集直变分包含问题(GSVVIP)和广义预解算子方程问题(GREP),并且建立了二者的等价关系.然后分别构造了新的迭代算法来逼近(GSVVIP)的解和(GREP)的解并且证明了其解的存在性以及它们的收敛性结论.

  • 标签: 广义集值变分包含 广义预解算子方程 H-增生算子 迭代算法
  • 简介:在2-一致光滑的Banach空间中,引入一种新的迭代算法研究非膨胀映象的不动点集与α-逆强增生算子的变分不等式解集的公共元素,并获得了迭代算法的强收敛性定理.而且应用这些结果考虑了非膨胀映象和严格伪压缩映象公共不动点的收敛性问题.

  • 标签: 变分不等式 非膨胀映象 α-逆强增生算子 2-致光滑 严格伪压缩映象
  • 简介:介绍和研究了实q-一致光滑Banach空间中一类新的具(A,η)一增生算子的广义混合拟一似变分包含组,利用(A,η)一增生算子的预解算子技巧,证明了解的存在性及由新的P步迭代算法所生成序列的收敛性.

  • 标签: 变分包含组 (A η)-增生算子 预解算子 迭代算法 收敛性
  • 简介:设Z为实一致光滑Banach空间,T:Z→Z为强增生映射,文章提出了新的带误差的三重迭代序列,并证明了带误差的三重迭代序列强收敛到方程Tx=f的唯一解,(带误差的)Mann迭代和(带误差的)Ishikawa迭代均可作为其特例.此外,相关结果也讨论了关于强伪压缩映射不动点的三重迭代逼近问题.

  • 标签: 三重迭代 强增生映射 强伪压缩映射 非线性增生算子 收敛性 误差
  • 简介:利用连续线性泛函满足的某些条件,给出了关于m-增生、奇算子的一些映射结果,这些结果是对已有文献中相应结果的改进.其中第二节中考虑了算子的奇性,运用Borsuk定理得出了m一增生、奇算子的映射定理;在第三节中讨论了凝聚映射的相应结果.

  • 标签: M-增生算子 奇算子 凝聚映射 紧映射 度理论
  • 简介:以广义逆为工具运用算子演算给出加权移位算子是次正常算子的条件,所用方法不同于Stampfli的工作,但结果一致.作为应用给出了两个例子.

  • 标签: 移位算子 次正常算子 亚正常算子 M-P广义逆
  • 简介:设初等算子E(X)=∑AiXBi,定义E*(X)=∑Ai*XBi*.我们证明了EE*=E*E当且仅当{Ai}和{Bi}都是交换的正规算子族,从而回答了由D.Keckic提出的关于初等算子正规性的开问题.我们还给出了E=E*的充分必要条件.

  • 标签: 初等算子 正规性 正规算子
  • 简介:针对现有灰色预测模型主要以一阶累加生成序列作为建模序列,再累减还原为原始序列预测值,本文通过Gamma函数将累加生成算子和累减生成算子拓展到正实数领域,给出分数阶累加生成算子和分数阶累减生成算子的解析表达式,一阶和整数阶均是其特例,证明了两算子之间的互逆性.为建立分数阶灰色预测模型和拓宽灰色预测模型的应用范围提供理论基础.

  • 标签: 灰色系统理论 分数阶 累加生成算子 累减生成算子
  • 简介:设X是自反Banach空间且X和X^*均为局部一致凸空间,D是X的开、有界、凸子集,T:D→X^*是伪单调算子(pseudo-monotone),C:D→X^*是紧算子或全连续算子。利用(S+)型算子的度理论,我们建立了T+C值域性质的几个结果,这些结果对研究各类方程问题有所应用。

  • 标签: 伪单调算子 (S+)型算子 同伦 紧扰动 局部一致凸空间 值域
  • 简介:设M^2n+1(K)是2n+1维常ψ—截面曲率K的紧致Sasaki流形,本文证明了与M^2n+1(K)等谱的上同调Einstein的紧致Sasaki流形必有常ψ-截面曲率K.

  • 标签: 流形 截面曲率 LAPLACE算子 上同调 证明