学科分类
/ 25
500 个结果
  • 简介:教学设计教学目标(一)知识与技能1.理解互逆命题、原命题、逆命题的有关概念及关系;2.掌握勾股定理逆定理的探究方法;3.掌握勾股定理逆定理并会运用。

  • 标签: 勾股定理 逆定理 直角三角形
  • 简介:北师大版初中义务教育数学教科书(第九册)用构造法证明了勾股定理逆定理,方法经典、不失巧妙(文[1]作了详细叙述),但所构造的新图形显得有些突如其来,给学生的感觉是“太难想到了”;文[1]用反证法来证明,也非常简洁,但反证法需要较强的逻辑思维能力,这对初中阶段的学生来说是较难适应的,更何况应用反证法的前提是“正难则反”.

  • 标签: 勾股定理 逆定理 逻辑思维能力 “正难则反” 初中阶段 数学教科书
  • 简介:勾股定理是初中几何的一个重要定理,它主要是用于求直角三角形的边长;而其逆定理则是用于判定一个三角形中的某一个角是直角.由此看来,勾股定理与其逆定理在应用上有着很大的不同,然而却有不少的几何问题必须应用两者“联手”来解决,现略举几例说明.

  • 标签: 勾股定理 逆定理 直角三角形 解题 初中几何 几何问题
  • 简介:甲:听说你对勾股定理很有研究,是吗?乙:研究谈不上,多少知道一点罢了.甲:都知道些什么呢?.乙:知道勾股定理的证明有几百种,而且大多数是采用面积证法.听说连美国的一位总统也曾凑过热闹,找到了一种很简便的证法.

  • 标签: 勾股定理 逆定理 陷阱 证法
  • 简介:勾股定理及其逆定理是几何中的重要定理,应用极其广泛,历年来都是各地中考命题的热点.了解一下往年中考怎么考,同学们学习时就会胸有成竹了.

  • 标签: 勾股定理 逆定理 应用 中考命题 几何 学习
  • 简介:“如果一个三角形的三条边长分别为a、b、c,且有a^2+b^2=c^2。那么这个三角形是直角三角形”这就是勾股定理逆定理,它是初中几何中极其重要的一个定理,有着广泛的应用,下面举例说明。

  • 标签: 勾股定理 逆定理 应用 直角三角形 初中几何 举例说明
  • 简介:联合应用勾股定理及其逆定理,可以解决很多几何问题,其一般步骤是:先应用勾股定理逆定理证明已知图形(或适当添加辅助线后的图形)中的某个三角形为直角三角形,然后再应用勾股定理解决问题。

  • 标签: 勾股定理 逆定理 应用 直角三角形 添加辅助线 几何问题
  • 简介:内容摘要:勾股定理是华师大版八年级上册第14章的内容,它是在我们已经初步掌握直角三角形定义及有关性质的基础上进行学习的,它是我国古代数学的一项伟大成就,是三角形三边关系之后用来描述特殊三角形三边关系的又一个重要的结论.勾股定理揭示了直角三角形三边长的内在联系,反映了三边之间特殊的平方关系,它的逆定理为我们提供了三角形是否是直角三角形的依据,也是判定两条直线是否互相垂直的重要方法.它为我们利用代数方法来研究几何图形提供了新的途径和方法,因此应用十分广泛.

  • 标签: 勾股定理 逆定理 分类讨论
  • 简介:  勾股定理揭示了直角三角形三边之间的关系,其逆定理是判定直角三角形的一种重要方法.综合应用勾股定理及其逆定理,可以解决很多几何问题.其一般步骤是:先应用勾股定理逆定理证明已知图形(或适当添加辅助线后的图形)中的某个三角形为直角三角形,然后再应用勾股定理解决问题.……

  • 标签: 勾股定理逆定理 综合应用 逆定理综合
  • 简介:如果一个三角形的三边长满足两边的平方和等于第三边的平方.那么这个三角形是直角三角形.这就是勾股定理逆定理.它在数学中的应用非常广泛.下面举例说明勾股定理逆定理在解题中的应用.

  • 标签: 定理应用 勾股定理 直角三角形 举例说明 逆定理 平方和
  • 简介:  勾股定理揭示了直角三角形三边之间的关系,其逆定理是判定直角三角形的一种重要方法.综合应用勾股定理及其逆定理,可以解决很多几何问题.其一般步骤是:先应用勾股定理逆定理证明已知图形(或适当添加辅助线后的图形)中的某个三角形为直角三角形,然后再应用勾股定理解决问题.……

  • 标签: 勾股定理逆定理 综合应用 逆定理综合
  • 简介:勾股定理逆定理揭示了直角三角形中的三边之间的数量关系,号称"几何的基石",是从"形"到"数"的飞跃,是几何计算、证明的重要工具.一定要牢固掌握并熟练运用.下面就勾股定理及其逆定理的主要考点作如下分析,希望能对你的复习有所帮助.

  • 标签: 中考 勾股定理 逆定理 直角三角形 数量关系 几何计算
  • 简介:从探究的角度,对"勾股定理逆定理"的形成过程进行新的设计:将教科书上"古埃及人用一根绳子围成直角三角形"的问题改编成探究题,让学生先独立思考,再全班交流;运用科学探究,让学生先归纳猜想,再对猜想的结论进行证明;引导反思,让学生探究发现"副产品".

  • 标签: 勾股定理的逆定理 探究学习 探究教学
  • 简介:勾股定理及其逆定理是中学数学中几个重要的定理之一,它体现了由“形”到“数”和由“数”到“形”的数形结合思想.勾股定理在解决三角形的计算、证明和解决实际问题中得到广泛应用,勾股定理逆定理常与三角形的内角和、三角形的面积等知识综合在一起进行考查.对于初学勾股定理及其逆定理的学生来说。由于知识、方法不熟练,常常出现一些本应避免的错误,失分率较高.本文拟针对具体失误的原因,配合相关习题进行分析、说明其易错点,希望帮助同学们避免错误,走出误区.

  • 标签: 勾股定理 逆定理 易错点 应用 数形结合思想 知识综合
  • 简介:<正>勾股定理及其逆定理揭示了直角三角形中三边之间的性质,是中学数学中几个重要的定理之一.正如德国著名数学家、天文学家开普勒曾经说过的:"几何中有两个宝藏,一是勾股定理,一是黄金分割."他给勾股定理以很高的评价.勾股定理在解决三角形的计算、证明和解实际问题中得到广泛应用.勾股定理逆定理是由三边关系判定直角三角形的一个重要方法,它常与三角形的内角和、三角函数值、三角形的面

  • 标签: 中学数学 解题策略 位线 问题解决 著名数学家 旋转中心