学科分类
/ 5
82 个结果
  • 简介:采用有限元方法研究复合材料层合板结构在线性温度场作用下非线性热振动特性.采用特征值屈曲分析方法,判断了结构在线性温度场作用下的临界屈曲分歧点,计算了结构的一阶弯曲固有频率,分析了铺层角度及铺层层数对结构临界屈曲温度分布和结构固有频率的影响,总结了其对复合材料层合板结构热振动特性影响的一般规律.这些结论对复合材料结构设计、抗热设计有一定的指导意义.

  • 标签: 复合材料层合板 非线性 振动分析 特征值屈曲分析 层合板结构 振动特性
  • 简介:本文对移动车辆作用下桥梁系统的振动能量俘获进行了研究.将车辆模型简化为车轮--弹簧--阻尼器--簧上车身质量体系,桥梁简化为对边简支对边自由板模型,压电俘能结构采用粘贴有压电晶体材料的悬臂梁并在其末端附加一质量块.对于这个耦合动力学模型,首先,通过板壳振动理论推导出了移动车辆作用下板的运动微分方程;其次,根据欧拉伯努利梁振动理论和基尔霍夫第一定律得到了以桥梁振动响应作为激励的悬臂梁动力学--压电耦合方程;最后,对耦合运动微分方程进行了求解并对其数值模拟结果进行了分析.结果表明:采用设计的压电俘能结构可以有效地收集桥梁系统的振动能量,而压电装置的位置、压电梁的厚度、集中质量、车辆速度对压电俘能效率都有一定影响.

  • 标签: 振动响应 俘能 压电 桥梁
  • 简介:分析了风力机叶片大挠度挥舞振动特性.基于Hamilton原理,建立了叶片大挠度挥舞振动控制方程,其中非稳态气动力由Greenberg公式得出.使用瑞利一利兹法求解振动特征问题,得到振动的频率和无阻尼模态函数.基于得出的模态函数,使用Galerkin方法将控制偏微分方程离散,得到模态坐标方程.将振动位移分解为静态位移和动态位移,得到了静态位移和动态位移方程,考查了入流速度比对静态位移和气动阻尼的影响,并对大挠度挥舞振动动态响应进行了分析,得到如下结论:大挠度挥舞振动静态位移沿叶片展向随人流速度比的增大而增大,叶尖处位移最大;当人流速度比较小时,振动为小振幅的周期运动,人流速度比较大时,振动为大振幅的拟周期运动.

  • 标签: 风力机叶片 大挠度 挥舞振动
  • 简介:建立了双参数弹性地基上的正交异性矩形薄板自由振动位移函数微分方程,并得到其一般解.这可用以精确地求解板在任意边界条件下的自由振动问题.以四边固定的正方形板为例进行了分析,计算过程简单,便于实际应用.亦适用于求解单参数弹性地基和各向同性板情形。

  • 标签: 弹性地基 自由振动 正交异性板 频率
  • 简介:研究了粘弹性夹层圆板的自由振动特性.基于经典弹性薄板理论和Kelvin-Voigt粘弹性本构方程,建立了粘弹性夹层圆板振动控制方程.采用分离变量法导出了粘弹性夹层圆板的自然频率及振型解析表达式,计算了固支和简支粘弹性夹层圆板的自然频率,并与有限元计算结果进行比较;讨论了粘弹性夹层圆板的夹心层比率对自然频率及衰减系数的影响.研究表明:(1)随着夹心层厚度的增大,系统频率先增大后减小,高阶时该趋势表现更为明显;(2)随着夹心层厚度的增大,衰减系数一直增大,高阶时该趋势表现更为明显.

  • 标签: 粘弹性夹层圆板 自由振动 Kelvin-Voigt 分离变量法
  • 简介:针对含间隙的两自由度弹簧-质量分段振动系统的非线性模态开展了研究.首先,解析确定了分段保守自治系统发生同相和反相模态运动的初始位移,并采用加权平均方法确定了分段振动系统的模态频率,及其在位形空间模态曲线.然后,采用数值方法求解了系统的非线性模态曲线和模态频率,与本文获得的解析模态频率比较,说明本文的结果较等效模态频率有更好的精度.研究结果表明:在一定的参数条件下,系统的非线性模态个数会高于系统的自由度数目,系统可能发生内共振,而产生多余模态.多余模态运动是两振子同向振动中含有异向振动,说明多余模态是在同相模态运动和反相模态运动之间转换的模态.

  • 标签: 分段线性系统 非线性模态 模态频率 多余模态
  • 简介:以灰色预测控制理论为基础,采用现代控制理论中的二次型优化原理,以控制力和响应加权最小为目标函数,设计了两种基于灰色预测理论的转子系统振动主动控制方案--灰色GM(1,1)预测优化控制方案和灰色Verhuslt预测优化控制方案.并将该两种方案分别应用于带电磁阻尼器转子轴承系统的转子振动主动控制中,通过数值仿真验证了两种控制方法的有效性,并对两种方法的控振效果进行了比较.

  • 标签: 转子系统 振动主动控制 灰色GM(1 1)预测优化控制 灰色Verhuslt预测优化控制
  • 简介:研究了具有磁流变阻尼器悬架系统汽车的非线性动力学行为.汽车采用七自由度模型,磁流变阻尼器采用Sigmoid模型,路面激励为四轮有不同相位差的正弦激励.根据第二类Lagrange方程建立了汽车振动微分方程,采用四阶Runge—Kutta法进行数值仿真.以激励频率为参数分析汽车振动响应分岔过程,并通过时间历程图、相位图等分析了汽车在不同频率范围的振动特性,结果表明在特定的激励频率区间汽车发生混沌运动.分析结果可为基于磁流变阻尼器的车身振动控制提供理论指导.

  • 标签: 磁流变阻尼器 非线性振动 分岔 混沌
  • 简介:对旋转粘弹性夹层梁的非线性自由振动特性进行了分析.基于Kelvin—Voigt粘弹性本构关系和大挠度理论,建立了旋转粘弹性夹层梁的非线性自由振动方程,并使用Galerkin法将偏微分形式振动方程化为常微分振动方程.采用多重尺度法对非线性常微分振动方程进行求解,通过小参数同次幂系数相等获得微分方程组,并通过求解方程组及消除久期项来获得旋转粘弹性夹层梁非线性自由振动的一次近似解.用数值方法讨论了粘弹性夹层厚度、转速和轮毂半径对梁固有频率的影响.结果表明:固有频率随转速增大而增大,随夹层厚度增大而减小,随轮毂半径的增大而增大.

  • 标签: 旋转粘弹性夹层梁 Kelvin—Voigt 非线性振动 多重尺度法 近似解 固有频率
  • 简介:建立了两自由度两点碰撞振动系统的动力学模型,给出了碰撞振动系统产生粘滞的条件,分析了系统存在的粘滞运动,采用打靶法,利用变步长逐次迭代逼近的方法求解系统的不稳定的周期碰撞运动,即Poincare截面上的不动点,通过对两自由度两点碰撞振动系统进行数值模拟显示了系统在一定参数条件下存在周期倍化分叉和Hopf分叉,同时通过数值模拟的方法得到了以两自由度两点碰撞振动系统Poincare截面上的不变圈表示的拟周期响应,并进一步分析了随着分岔参数的变化,两自由度两点碰撞振动系统周期运动经拟周期分叉和周期倍化分叉向混沌的演化路径。

  • 标签: 碰撞振动 两点碰撞 周期运动 POINCARE映射 分叉 混沌
  • 简介:在考虑结构变形对电磁场的影响基础上,假设载流梁的变形为小变形,把变形后载流梁中的电流方向改变看成是电流矢量的刚性旋转,建立了载流梁在磁场中的横向固有振动控制方程.方程表明载流梁在磁场中的横向固有振动是一个典型的非线性问题.采用摄动法求得了其近似解,得到了载流梁在磁场中的横向固有振动频率及位移解析表达式.并通过实例计算讨论分析了导线与载流梁间距、载流梁的电流与导线电流的方向及大小、载流梁梁长及其半径等因素对载流梁横向固有振动的影响,得到了一些有价值的结论.

  • 标签: 载流梁 磁场 固有振动 电流
  • 简介:首先弹性矩形薄板的动力学方程表示成为Hamilton正则方程,然后采用辛几何方法对全状态相变量进行分离变量,并利用得到的共扼辛正交归一关系,求出四边固支弹性矩形薄板的固有频率和振型的解析解表达式.由于在求解过程中不需要事先人为的选取挠度函数,而是从弹性矩形薄板的动力学基本方程出发,直接利用数学的方法求出可以满足四边固支边界条件下薄板的固有频率和振型的解析解表达式,使得问题的求解更加理论化和合理化.此外,还给出了计算实例来验证本文所采用的方法以及所推导出公式的正确性.

  • 标签: 弹性矩形薄板 四边固支 自由振动 HAMILTON正则方程 固支边界条件 固有频率
  • 简介:结合Liouville—Green变换,改进了求解变系数二阶线性齐次方程的渐近法.并采用改进后的渐近法研究了负载钢丝绳的固有振动问题,推导出了其固有振动的近似频率特征方程.实例计算表明,改进后的渐近法不但比Bessel函数法计算简便,而且计算精度也非常高.

  • 标签: 渐近法 负载 频率
  • 简介:研究了金字塔芯层点阵夹芯梁的自由振动和非线性受迫振动特性.基于折线理论推导出两端简支金字塔型点阵夹芯梁的非线性动力学方程.计算点阵夹芯梁固有频率并进行了验证.分析了杆件半径、杆件倾斜角度和芯层高度对点阵夹芯梁固有频率的影响.研究了点阵夹芯梁在不同激励幅值和不同结构参数下的非线性幅频响应特性.结果表明,随着各结构参数的增大,夹芯梁的固有频率均呈先增大后减小的变化规律,并且芯层结构参数对点阵夹芯梁的非线性响应存在复杂影响.

  • 标签: 振动分析 点阵夹芯梁 非线性幅频响应 结构参数 固有频率
  • 简介:以含主动调谐质量阻尼器(TMD)的建筑结构为研究对象,研究作用于TMD上的作动器输出力小于设计控制力时的控制方法。为了确定系统控制率,在满足线性矩阵不等式约束的前提下,通过优化控制目标函数来达到。同时,为了保证控制效果,采用了峰-能量控制器。最后,以一座六层建筑物为例来说明本文方法的可行性。

  • 标签: 饱和作动器 LMIS 峰-能量控制器 建筑结构
  • 简介:构造6节点三角形单元,适合于平面薄膜自由振动的有限元分析.文中采用面积坐标,给出单元的形函数,根据哈密顿原理建立薄膜自由振动方程,推导其单元刚度矩阵和单元质量矩阵.3个典型算例表明,6节点三角形单元的计算结果比ANSYS三角形单元更接近理论解,具有更高的精度.

  • 标签: 平面薄膜振动 有限元分析 6节点三角形单元
  • 简介:利用实验方法研究粘弹性传动带的非线性振动.实验装置中的粘弹性传动带是同步带,通过伺服电机进行驱动,当电动机转速在某一恒定值上下变动时,带中的张紧力也会呈现周期性变化.通过改变传动带中张紧力的频率和幅值,得到了粘弹性传动带的频率响应曲线和周期运动、倍周期运动以及混沌运动的波形图和相图.

  • 标签: 混沌运动 非线性振动 粘弹性传动带
  • 简介:非线性输出频率响应函数是由Voherra级数发展而来的一个新概念.对一类具有反对称阻尼特性的隔振器,通过该概念推导出了振动传递性与系统非线性参数之间的显式解析关系;进而系统地研究了非线性阻尼参数对隔振器的力传递性能和位移传递性能的影响.研究结果表明,虽然非线性隔振器在受正弦信号激励下会出现高次倍频分量,但对于其传递性能的评估仍可简单地通过系统输入和输出信号的基频分量之间的关系来衡量;另外,反对称非线性阻尼能够有效地抑制隔振器在共振区的力传递性和位移传递性,而在非共振区则基本无抑制效果.研究结果对于具有反对称阻尼特性的隔振器的分析与设计具有重要意义.

  • 标签: 非线性振动 VOLTERRA级数 非线性阻尼 隔振器
  • 简介:综述了描述轴向运动梁横向非线性振动的两组数学模型的研究进展.在轴向运动梁径向和横向平面非线性振动耦合模型的基础上,总结了两组横向非线性振动模型的推导,以及在自由振动、受迫振动、参激振动工况下两组横向模型的近似解析比较的研究进展.在直接数值离散方法的基础上,总结了两组横向模型在各种工况下对平面耦合模型近似程度的研究进展.最后提出若干尚待深入研究的问题.

  • 标签: 轴向运动梁 振动 非线性模型 解析分析 数值仿真
  • 简介:将广义微分求积法(GDQR)用于分析输流曲管的流致振动问题,这是一个新的尝试.基于输流曲管的面内振动微分方程,利用GDQR法使曲管系统在空间域上得以离散化,从而获得了输流曲管的动力学方程组.数值算例中,计算得到了输流曲管在几种典型边界条件下的固有频率以及曲管发生失稳的临界流速等,这些计算结果与前人的解析解结果吻合较好.此外,还给出了两端固定输流曲管典型的动力响应行为.研究表明,GDQR法极易处理输流曲管这一类动力学模型,精度令人满意,进一步的研究可望推广到输流管道的非线性振动分析中.

  • 标签: QR法 流致振动 GD 广义微分求积法 振动微分方程 动力学方程组