简介:<正>WepresentatwistedversionoftheAlexanderpolynomialassociatedwithamatrixrep-resentationoftheknotgroup.ExamplesoftwoknotswiththesameAlexandermodulebutdifferenttwistedAlexanderpolynomialsaregiven.
简介:ThispapercontinuestheworkofD.MacHale,D.Flannery(Proc.R.Ir.Acad.81A,209—215;83A,189—196)andtheauthor(Proc.R.Ir.Acad,90A,57—62;J.SouthwestChinaNormalUniversity15,No.1,21.—28)onthetopicon“FinitegroupswithgivenAutomorphismgroup”.Thefollowingresultisproved:LetGbeafinitegroupwithAutGaSchmidtgroup.ThenGisisomorphictoS3orKlain4-group.,orDsuchthatAutD=InnD.DisaSchmidtgroupoforder2?p.S2(∈Syl2D)isanormalandspecialgroupexoeptasupersperspecialgroupwithoutcommutativegenerators.
简介:让G没有固定的点在的一个集合上的一个排列组,和m是一个积极整数。然后,G的运动被定义为行动(G):=supG{|Gg\G|g?G}行动(G):=\mathop{\sup}\limits_\Gamma\left\{{\left|{\Gamma^g\backslash\Gamma}\right|\left|{g\inG}\right}\right\}。它被Praeger显示出如果行动(G)=m那时|3m+t1,在t是G轨道在上的数字的地方。在这份报纸,有有最大值的度3m+t1的所有不及物的排列组跳了被分类。确实,她问题的一个积极答案是否上面的界限|=3m+t1为|为每t是锋利的>1被给。
简介:Thispapergivesap-adicanalogueoftheMackeytheory,whichrelatesrepresentationsofagroupoftypeG=H×_tAtosystemsofimprimitivity.
简介:TheauthorsconsidertheextendedHeckegroupsH(λq)generatedbyT(z)=-1/z,S(z)=-1/(z+λq)andR(z)=1/-zwithλq=2cos(π/q)forq≥3aninteger.Inthispaper,theevensubgroupHe(λq),thesecondcommutatorsubgroupH"(λq)andtheprincipalcongruencesubgroupsHp(λq)oftheextendedHeckegroupsH(λq)arestudied.Also,relationsbetweenthemaregiven.
简介:Introduction:ARationaleforPeerResponseGroupsPeerresponsegroupshavebecomeacommonsightincompositionclassroomsoverthelasttwentyyears.WhileGere(1987)hasdemonstratedthatpeerresponsegroups,inwhichstudentwritersrespondtooneanother’swriting,havealonganddistinguishedpast,thecurrentuseofsuchgroupsemergedoutofthewidespreadadoptionoftheprocessapproachofthe1960’s,whentheywereadvocatedbyanumberofcompositionpractitioners,includingBruffee(1978;