简介:50—60年代时由于发射机技术的单一,当时的发射机不是只能发射连续波信号,就是只能发射脉冲信号.因此干扰机也只能够在单模式下使用,舰艇需各配备一套噪声与欺骗干扰机才能同时具有干扰与欺骗干扰能力。70年代后由于能够工作在连续波与脉冲波两种模式的行波管放大器的实用化,同时出现了具备噪声干扰与欺骗干扰的双模式干扰机,同一部干扰机既能发射压制性的连续波噪声干扰,又能产生应答式的欺骗脉冲干扰,发射脉波时的峰值功率可较发射连续波时高数十倍.从而增加了干扰机的运用弹性:干扰机依据状况的不同可产生压制性的连续波噪声干扰,也可产生欺骗的脉波信号.目前绝大部分的主动干扰机都已同时拥有噪声与欺骗干扰2种作业模式,可在双模式下作业。而拜微波集成电路技术进步之赐.90年代后小型.可以火箭动力擦布或置于小艇上拖曳的舷外主动雷达诱饵也逐渐实用化.可与现有电子战系统整合以对抗单脉冲导弹导引头的威胁。
简介:空间推进系统可靠性评估时,采用Lindstrom-Maddens(L-M)法评估比传统方法得到的结果更高。对比分析评估数据后发现L-M法更合理,因此建议采用L-M法进行可靠性评估,可以在满足可靠性指标前提下防止对产品提出过分苛刻的要求,从而降低设计难度和减少试验费用。
简介:在60年代末到70的代初期的越南战争中,以美国海空军飞机与越南北防空体系间的对抗为核心的电子战又使各类新式电子战技术的发展迈上一个新的高峰,如反辐射攻击等雷达对抗的新措施纷纷出现。但是,相较于迅速开展的航空电子战,此时舰载电子战设备多系被用来配合舰载雷达与声纳探测目标,海上电子对抗仍仅是海战的一个辅助方式,各国军方对海战的认识大致上仍不脱离以传统的飞机投射炸弹、火箭,使用舰载火泡或者舰射、潜射鱼雷等方式来进行,舰载电子战系统也是以侦测、干扰舰载或机载火控雷达的主要目的。有限的作战形态认识无法推动舰载电子战设备产生革新的发展,这种情形一直持续到60年代末期。