简介:解析几何的基本思想是用代数的方法来研究几何,为了把代数运算引到几何中来,最根本的做法就是使几何结构代数化、数量化。我们知道,在平面上建立直角坐标系后,平面上的点和一对有序实数之间建立起了一一对应关系,从而使平面上的曲线可以用两个变量所满足的方程来表示,並且可以通过对方程的讨论来研究曲线的性质。在平面上建立极坐标系同样使得平面上的点和一对有序实数建立对应关系,平面上的曲线也可以用两个变量所满足的方程来表示。有些曲线在极坐标系中的方程比在直角坐标系中容易建立,而且形式也简单得多,更便于研究和讨论。由此可见,我们在平面上建立坐标系,不仅使得平面上的点与一对有序实数之间建立起对应关系、平面上的曲线与二元方程之间建立起对应关系,而且建立怎样的坐标系直接影响曲线方程建立的难易、形式的繁简。为此,本文试在平面上建立一种新的坐标系,在该坐标系内某些曲线的方程比较容易建立,形式也比较简单。