简介:全日制十年制学校初中课本《数学》第五册第184页第18题是求证:在园内接四边形ABCD中,AB·CD+BC·AD=AC·BD(提示:设法在BD上取P点使AB·CD=AC·BP)。证明:从A引直线AP交BD于P,使∠BAP=∠CAD又有∠ABP=∠ACD,∴△ABP∽△ACP,图1∵BP:DC=AB:AC,∴AB·DC=AC·BP。……①又∵∠BAP=∠CAD,∴∠BAC=∠PAD,又∠ACB=∠ADP。∴△ABC∽△APD,则BC:PD=AC:AD,∴AD·BC=AC·PD……②①+②得AB·CD+BC·AD=AC(BP+PD)=AC·BD。数学老师告诉我们,这是平面几何中一个相当重要的定理,叫做Ptolemy定理:“园内接四边形中,二条对角线所包距形面积等于一组对边所包距形面积与另一组对边所
简介: 勾股定理是几何学中一个非常重要的定理.它揭示了直角三角形中三边之间的数量关系,是解决有关直角三角形问题的有力武器,同时在生产生活中和其他自然科学中都有广泛的应用.利用勾股定理解题时,还必须注重数形结合和分类讨论思想的运用.……
简介: 勾股定理是几何学中一个非常重要的定理.它揭示了直角三角形中三边之间的数量关系,是解决有关直角三角形问题的有力武器,同时在生产生活中和其他自然科学中都有广泛的应用.利用勾股定理解题时,还必须注重数形结合和分类讨论思想的运用.……
简介: 勾股定理具有十分悠久的历史,几乎所有的文明古国(中国、埃及、巴比伦、印度等)对它都有研究.因而,有些史学家将其作为人类最伟大的科学发现之一,这并不过分.……